

FINAL REPORT OF SPRINGFIELD LAKE NO. 1 OUTLET STRUCTURE & CHANNEL STUDY

Task B – Preliminary Plan

Springfield Township, Summit County

Prepared For:

Office of the Engineer County of Summit 538 E. South Street Akron, OH 44311

DLZ OHIO, INC.

DLZ Job No. 2322-6015.00

March 11, 2025

1 Canal Square Plz, Ste 1300, Akron, OH 44308-1037 OFFICE 330.923.0401 ONLINE WWW.DLZ.COM

Akron Bellefontaine Bridgeville Burns Harbor Chicago Cincinnati Cleveland Columbus Detroit Fort Wayne Grand Rapids Indianapolis Jacksonville Joliet Kalamazoo Knoxville Lansing Lexington Logan Madison Maumee Melvindale Merrillville Munster Muskegon Port Huron Saint Joseph San José South Bend Waterford

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 2 of 37

Table of Contents

1.0	Executive Summary
2.0	Introduction6
3.0	Existing Information Review7
4.0	Preliminary Waters Investigation11
4.1	Wetland Delineation11
5.0	Additional Waters Investigation11
5.1	Threatened and Endangered Species Study11
5.2	Desktop Cultural Resource Study12
5.3	Permits identified12
6.0	Survey14
6.1	Easements14
7.0	Hydrologic and Hydraulic (H&H) Modeling17
7.1	Lake Outlet Hydrology17
7.2	Outlet Channel Hydrology25
7.3	Existing Outlet Channel and Culvert Capacity Evaluation25
7.4	Proposed Condition Outlet Channel and Culvert Capacity Evaluation
7.5	Impact of Tributary Detention
7.6	H&H Modeling Conclusions
8.0	Structural Inspection
9.0	Geotechnical Evaluation
10.0	Preliminary Cost Estimate
11.0	Recommended Maintenance Schedule
12.0	Updates
13.0	Conclusions
APPEN	DIX A – Preliminary Plans
APPEN	DIX B – Field Walk Photo Log – August 1, 2023
APPEN	DIX C – Preliminary Waters Investigation Figures
APPEN	DIX D – Waters of the US Determination Report
APPEN	DIX E – Threatened and Endangered Species Study

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 3 of 37

- APPENDIX F Ohio State Historical Preservation Office Response Letter
- APPENDIX G Outlet Elevations Study
- APPENDIX H Breakdown of Longest Flow Path
- APPENDIX I Vertical Datum Conversion Methodology
- APPENDIX J FIS Report for Summit County
- APPENDIX K Flood Frequency Analysis on the Gage Flow Data
- APPENDIX L StreamStats Peak Flow Estimate
- APPENDIX M HEC-RAS Results
- APPENDIX N 100-Year Flood Map
- APPENDIX O Storage Capacity
- APPENDIX P Structural Evaluation
- APPENDIX Q Geotechnical Evaluation
- APPENDIX R Class IV Estimate of Probable Construction Cost
- APPENDIX S Conceptual Plans

List of Figures

Figure 1: Springfield Lake General Project Area	6
Figure 2: Delineation of Springfield Lake Watershed at the Lake Outlet	
Figure 3: Springfield Lake Watershed Delineation by CT Consultants	
Figure 4: Soil Group Distribution	
Figure 5: Land Use Distribution	
Figure 6: Inflow Hydrograph to the Lake and Routed Outflow Hydrograph in the 100-year Condition	
Figure 7: Aerial Map Showing the Locations of Interest	24
Figure 8: Sketch of HEC-RAS Model Showing the Location of Existing Structures	26
Figure 9: Total Discharge Profile	27
Figure 10: Water Surface Elevation Profile in the Existing Condition	28
Figure 11: Channel Velocity Profile in the Existing Condition	28
Figure 12: Water Surface Profile in the Proposed Condition	31
Figure 13: Channel Velocity Profile in the Proposed Condition	31
Figure 14: Total Discharge Profile in the Proposed Condition with Reduced Tributary Flows due to the	
Detention Pond	33
Figure 15: Water Surface Elevation Profile in the Proposed Condition with Reduced Tributary Flows due to	1
the Detention Pond	33
Figure 16: Water Surface Elevation Profile in the Proposed Condition with Reduced Tributary Flows due to	1
the Detention Pond	33

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 4 of 37

List of Tables

Table 1: Notable Items from August 1, 2023 Field Walk Photo Log	8
Table 2: Permitting Matrix	13
Table 3: Proposed Easements within Project Area	14
Table 4: Runoff Curve Number for Hydrologic Soil-Cover Complexes	20
Table 5: Subbasin Parameters	21
Table 6: Storage-to-Elevation Relationship	22
Table 7: Peak Flow Discharges at Lake Outlet and Downstream Locations with Data	24
Table 8: Summary of Roadway Crossings	27
Table 9: Hydraulic Parameters Adjacent to Structures in the Existing Condition Model	29
Table 10: Hydraulic Parameter Adjacent to Structures in the Proposed Condition Model	
Table 11: Tributary Peak Flow and Required Storage Capacity	
Table 12: Future Maintenance Schedule	

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 5 of 37

List of Acronyms

In preparation of this document, the following acronyms have been used:

AMC	Antecedent Moisture Condition
СМР	Corrugated Metal Pipe
CN	Curve Number
СРР	Corrugated Plastic Pipe
HEC-HMS	Hydraulic Engineering Center – Hydraulic Modeling System
HEC-RAS	Hydraulic Engineering Center – River Analysis System
GIS	Geographic Information System
Lidar	Light Detection and Ranging
NAD	North American Datum
NAVD	North American Vertical Datum
NGVD	National Geodetic Vertical Datum
NOAA	National Oceanic and Atmospheric Administration
OEPA	Ohio Environmental Protection Agency
OGRIP	Ohio Geographically Referenced Information Program
OSIP	Ohio Statewide Imagery Program
PVC	Polyvinyl Chloride
RCN	Runoff Curve Number
RCP	Reinforced Concrete Pipe
SCS	Soil Conservation Services
Тс	Time of Concentration
USACE HEC-SSP	United States Army Corps of Engineers Hydraulic Engineering Center Statistical
	Software Package
USGS	United States Geological Survey

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 6 of 37

1.0 Executive Summary

DLZ was contracted by Summit County Office of the Engineer to perform an evaluation of and recommend improvements to the Springfield Lake Outlet Structure and Channel. The Springfield Lake outlet channel often requires dredging to remove debris that builds up over time. DLZ studied approximately 5,400 LF of the channel from the Springfield Lake Outlet Structure North to the City of Akron corporation limits. The improvements discussed in this report intend to mitigate debris build up, reduce long term maintenance, and improve water quality in the channel. This report discusses the following topics: surveying, waters investigation, hydraulic and hydrological analysis, structure evaluations, proposed channel design, geotechnical evaluation, preliminary cost estimate, and recommended maintenance schedules. DLZ recommends no changes to the Outlet Structure and some modifications to the outlet channel geometry at strategic locations along with on-going maintenance. The preliminary Class IV cost estimate for the channel improvements is \$900,000.

2.0 Introduction

Summit County (the County) plans to perform improvements at the Springfield Lake (the Lake) outlet structure and channel. Springfield Lake is located in Springfield Township, just South of The City of Akron border, see **Figure 1** below. The existing lake outlet structure and channel flows North to the City of Akron limits, through commercial and residential areas. In the past, Summit County has had to dredge the channel which outlets Springfield Lake to clear debris and allow continuous flow. The County intends to perform these improvements to reduce the need for future maintenance and dredging. The proposed channel improvements will be designed to provide adequate capacity, reduce bank erosion, remove encroachments, and provide maintenance access and easements, as required.

Figure 1: Springfield Lake General Project Area

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 7 of 37

DLZ has performed Preliminary and Additional Waters Investigations, including desktop analysis and field visits to identify potential wetlands and streams in the project area. Site visits have also been performed to identify obstructions and illicit discharges along the channel. Survey has been performed in the project area including critical points such as drainage structures, culverts, channel profiles and sections within the study limits. The watershed area draining to Springfield Lake has been verified using record plans, LiDAR and GIS. Hydrologic and hydraulic (H&H) analysis has been performed including the creation of a hydrologic model utilizing HEC HMS software. Subsurface geotechnical investigation was performed including four soil borings around the Springfield Lake Outlet Structure and multiple grab samples taken within the channel.

Conceptual Plans were developed during Task A of this study, these reference a general stationing across the entire channel length of this study area, from STA 0+00* in Springfield Lake to STA 54+00* near the intersection of Shadybrook Dr. and Hillstock Ave. The Conceptual Plans are considered an archive set and can be found in **Appendix S**. These plans were improved upon to create Preliminary Plans during Task B of this study. The Preliminary Plans were used to advance design of the proposed channel improvements, and are found in **Appendix A**. The Preliminary Plans stationing varies from the Conceptual Plans to account for more detailed design between the proposed channel cross section geometry. The Preliminary Plan stations correspond to the Conceptual Plan stations between STA 2+20* and STA 19+00*. In this report, areas of the channel within the limits of Preliminary Plans alignment reference the Preliminary Plans stationing while areas outside of the channel reference the Conceptual Plans stationing and are noted with an asterisk.

In total, DLZ studied 5,400 LF of the outlet channel. Hydraulic and Hydrologic modeling determined that improvements can be implemented in the first 1,680 LF of the channel from the outlet structure that will improve flow for the entire channel length. The entire channel length studied will be accessible for maintenance activities.

3.0 Existing Information Review

DLZ reviewed the existing information provided by the County, including record drawings and reports. A site visit to the Springfield Lake outlet channel was performed on August 1, 2023. DLZ personnel walked the entire length of the channel to find and document any illicit discharges, outfalls, bridges, and obstructions. Photos were taken upstream and downstream every 250 feet along the outlet channel and at any location with discharges/outfalls/obstructions. No illicit discharges were identified. **Appendix A** contains Preliminary Plans for the Springfield Lake project area. Existing conditions are shown in these conceptual plans, including possible structure encroachments and proposed maintenance drives. A Field Walk Photo Log from the site visit can be found in **Appendix B**. A list of notable areas identified from this site visit is shown in **Table 1** below.

Photo No. 28 in **Table 1** shows an active flow outfall into the channel. There was no indication that this is a sanitary outfall; however, it is recommended to perform water quality testing to confirm.

The following existing utilities identified along the channel route may need to be relocated: at STA 107+20 there is an approximately 8" unknown utility pipe crossing the channel, and at STA 39+25* there are two existing sanitary manholes within channel limits that could be impacted by maintenance activities. There are also multiple bridges and one fence crossing over the channel between STA 111+80 and STA 115+80 that will need to be protected or potentially removed and replaced during construction.

Photo No.	Conceptual Plans Station	Preliminary Plans Station	ltem Observed	Size	Material	Comments
N/A	0+00	N/A	N/A	NA	N/A	Begin study area
8	9+50	107+30	Pipe Crossing	Approx. 8"	Ductile Iron	Closed pipe crossing above channel. Wooden bench resting against pipe.
9	10+50	108+30	Pipe Outfall	18″	СМР	Storm pipe outfall on East side of channel
12	11+00	108+80	Pipe Culvert	96" x 48"	СМР	Storm culvert under Canfield Road
13	11+50	109+30	Pipe Culvert	48"	RCP	Twin storm pipes with overgrown brush under Waterloo Road
14	13+00	110+80	Pipe Culverts	48"	RCP	Three storm culverts under Waterloo Road
16	13+00	110+80	Pipe Culverts	48"	CMP, three present	Three storm culverts
17	14+00	111+80	Bridge	18 ft wide, 34" tall above water level	Concrete and steel	Driveway bridge. 18 ft wide channel with cinder block walls. There is 1 steel beam crossing between bridges at STA 14+00 and 14+75.
19	14+75	112+55	Bridge	10 ft wide	Concrete and steel	Pedestrian Bridge. 10 ft wide concrete channel walls. There is 1 steel beam crossing between

Table 1: Notable Items from August 1, 2023 Field Walk Photo Log

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 9 of 37

						bridges at STA 14+00 and 14+75.
21	15+50	113+30	Bridge	20 ft wide	Wood	Wooden pedestrian bridge. 20 ft wide channel. No longer concrete channel walls at this point.
23	17+00	114+80	Fence	Approx. 6 ft tall fence	Chainlink	Fence spans entire length of creek. Open fence at bottom.
24	17+50	115+30	Bridge	14 ft wide	Concrete and steel	Bridge driveway crossing. 14 ft wide channel.
N/A	20+50	N/A	Pipe Outlet	6"	PVC	Pipe noted, no photo taken.
28	21+25	N/A	Pipe Outlet	30"	СРР	Active flow, no indication of sanitary flow noted by survey or field crews.
29	22+25	N/A	Pipe Outlet	30"	СРР	Chainlink fence and silt fence over top half of open end pipe.
36	25+50	N/A	Tributary Inlet	N/A	N/A	Stream inlet to the Springfield Lake outlet channel.
37	26+50	N/A	Pipe Outlet	12"	СРР	Pipe outlet embedded into channel wall, red spray paint marker on top of pipe.
38	27+00	N/A	Pipe Outlet	15″	СРР	Pipe outlet into channel.
41	29+50	N/A	Pipe Outlet	12"	PVC	Pipe outlet into channel.
44	30+75	N/A	Pipe Outlet	18"	СРР	Pipe outlet into channel.

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 10 of 37

49	33+75	N/A	Tributary Inlet	N/A	N/A	Stream inlet into the Springfield Lake outlet channel.
50	34+00	N/A	Pipe Outlet	10"	PVC	Pipe outlet into channel.
59	44+00	N/A	Debris	N/A	N/A	Debris build up in channel, fell tree branches, wooden pallets, misc. items. Spans ¾ width of channel.
65	48+50	N/A	Pipe Outlet	84″	RCP	Pipe outlet into channel.
66	51+00	N/A	Culvert	90"	СРР	Culvert under Shadybrook Drive. Debris blocking entire length of channel at start of culvert. Fell tree branches, wooden pallets, and sport balls in debris. After road crossing here, the channel is 12 ft wide concrete lined.
70	52+00	N/A	Downspout Outlet	4″	PVC	Home downspouts outlet into channel. Many homes in this area downspouts outlet to channel.
72	54+00	N/A	Downspout Outlet	4"	PVC	Home downspouts outlet into channel.
75	56+00	N/A	Headwall and pipe	12"	Metal	Pipe outlet headwall into channel, just past corporation limit. End of Field Walk Photo Log.
N/A	56+00	N/A	N/A	N/A	N/A	End of study area

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 11 of 37

4.0 Preliminary Waters Investigation

A preliminary investigation was conducted to identify wetlands, streams, and other regulated waters in the Springfield Lake study area. A desktop wetlands analysis was performed, this included reviewing Federal Emergency Management Agency (FEMA) flood risk reports and maps, Natural Resources Conservation Service (NRCS) Summit County soil reports, and National Wetlands Inventory (NWI) maps. These documents can be found in **Appendix C**.

Similar to the site visit mentioned above, DLZ personnel walked the length of the outlet channel on August 7, 2023, to find and document any features regulated as Waters of the United States (WOTUS). Photos from this site visit are also found in **Appendix C**.

Based on the desktop analysis and site visit investigations, DLZ determined the possible wetland boundary as WOTUS, as shown in **Appendix C – Figure 1**. There were also two streams identified in the field, see photos 5 – 7 in **Appendix C - Site Visit Photo Log**.

4.1 WETLAND DELINEATION

A site visit to determine wetland boundaries was conducted on April 16 and 17, 2024. A summary of findings is included in **Appendix D – Waters of the US Determination Report**.

5.0 Additional Waters Investigation

Additional waters investigation was conducted involving coordination with the Fish and Wildlife Service – Ohio Ecological Services Field Office and the Ohio Historic Preservation Office (OHPO). DLZ also reviewed applicable permits for channel improvements.

5.1 THREATENED AND ENDANGERED SPECIES STUDY

A list of threatened and endangered species was obtained from the Fish and Wildlife Service, Ohio Ecological Services Field Office. A total of two (2) threatened, endangered or candidate species were identified in the project area: Indiana Bat and Monarch Butterfly. The Ohio Department of Natural Resources (ODNR) Office of Real estate and Land Management provided a coordination letter which includes comments and results from the Natural Heritage Database, Fish and Wildlife, and Water Resources offices. According to Ohio Division of Wildlife (DOW) the project area is within the range of the Iowa darter (*Etheostoma exile*; S-E), pugnose minnow (*Opsopoeodus emiliae*; S-E), western banded killifish (*Fundulus diaphanous menona*; S-E), lake chubsucker (*Erimyzon sucetta*; S-T), and the paddlefish (*Polyodon spathula*; S-T). DOW recommends no in-water work occur from March 15 to June 30 to reduce impacts to aquatic species. The DOW also identified four bat species that may be present within the project area. The DOW requests that a habitat assessment for potential hibernaculum be conducted. The detailed Threatened and Endangered Species Review Study is attached in **Appendix E**.

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 12 of 37

5.2 DESKTOP CULTURAL RESOURCE STUDY

A Section 106 Project Summary Form was submitted to the Ohio Historic Preservation Office (OHPO). It was determined by the Ohio State Historic Preservation Office (SHPO) that no archaeological surveys are required and that the proposed project will not affect historic properties and therefore no further coordination is necessary at this time. The Ohio SHPO response letter is attached in **Appendix F**.

5.3 PERMITS IDENTIFIED

DLZ reviewed the project plans and assumed methods of construction to determine permits that may be needed for the proposed work. A short description of potential permits (i.e., permit type, any exceptions/exemptions, special conditions, and agency with regulatory authority) is included below, along with a matrix summarizing this information (see **Table 2**):

- Soil Erosion & Sedimentation Control The Summit Soil and Water Conservation District (SSWCD)
 has jurisdiction over erosion and sediment control features that have to be installed during the
 construction process. SSWCD is also responsible for the review and approval of the Stormwater
 Pollution Prevention Plan (SWPPP). The Ohio Environmental Protection Agency (OEPA) requires the
 Owner/Operator of any site where one (1) or more acre will be disturbed, to file a Notice of Intent
 and obtain an NPDES Permit. Estimated 2 acres of disturbed area, requiring an application fee of
 \$1000.
- Notice of Intent Coverage under the National Pollution Discharge Elimination System (NPDES), OEPA Construction General Permit #OHC000006. Estimated 2 acres of disturbed area, requiring a fee of \$200.
- Section 404 The U.S. Army Corps of Engineers (USACE) administers Section 404 of the Clean Water Act (CWA) and has authority to regulate the discharge of fill or dredged material into all "waters of the United States." WOTUS include traditional navigable waters (e.g., certain large rivers and lakes) and tributaries to these waters that are relatively permanent, standing or continuously flowing bodies of water, and wetlands adjacent to these waters. WOTUS are regulated by the USACE, and permits are required for work within wetlands or below the OHWM. Depending on final stream and wetland impacts, this project may meet the conditions for a Nationwide Permit (NWP) under Section 404 of the Clean Water Act. Conditions for each type of NWP permit can vary but typically all require wetland impacts to be less than ½- acre.
- 401 Water Quality Certification The Ohio Environmental Protection Agency (OEPA) is responsible for issuing Water Quality Certification (WQC) under Section 401 of the Clean Water Act. WQC is required in conjunction with the USACE Section 404 permits. Typically, permit conditions for the 401 WQC can be met under the NWP.
- T&E Species As noted in the previous section, there are a few potential T&E species of concern within the project corridor. If there is a federal action associated with the project (including funding

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 13 of 37

or permitting), coordination should be undertaken with USFWS to obtain concurrence on a no effect determination. Section 7 compliance would be initiated at USFWS website <u>IPaC: Home (fws.gov)</u>. Coordination with DOW may be necessary to determine if additional bat hibernaculum surveys are needed.

• Flood Hazard Permit – Proposed channel improvements take place within the 100-year flood plain. A Flood Hazard Area Development Permit should be submitted to the Floodplain Administrator for Summit County.

Permit Type	Agency with Jurisdiction	Cost	Comments
Soil Erosion & Sedimentation Control	Summit Soil and Water Conservation District (SSWCD)	\$1000 for between 1 - 4.9 Acres Disturbed	Stormwater Pollution Prevention Plan (SWPPP) will need to be approved by SSWCD. Estimated 2.0 acres disturbed.
Construction Stormwater Notice of Intent	ΟΕΡΑ	\$200 for between 1 - 5.99 Acres Disturbed	Required to submit to OEPA. Estimated 2.0 acres disturbed.
Summit Co. Riparian Setback Ordinance (Chapter 937)	Summit Soil and Water Conservation District	None	Summit County Engineer maintains right to access streams.
Section 404 of Clean Water Act	USACE	None	Wetland/stream impacts will need a federal permit.
401 Water Quality Certification	ΟΕΡΑ	Varies on Level of Permit required.	A separate permit may become necessary if wetland/stream impacts exceed NWP thresholds or 401 permit conditions can not be met.
T&E Species	USFWS and ODNR	None	No permits are required, but coordination may be needed if a federal action becomes necessary.
Flood Hazard Area Development Permit	County Floodplain Administrator and FEMA	None	Permit required

Table 2: Permitting Matrix

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 14 of 37

6.0 Survey

Survey has been performed in the Springfield Lake project area, including critical points such as drainage structures, culverts, channel longitudinal profile, and channel sections. Horizontal and vertical controls were based on the Ohio North State Plane coordinate system NAD 83 and NAVD 88 datums, respectively. Summit County GIS mapping data was used to determine existing property lines. OGRIP LiDAR/GIS data was utilized to create a base surface in Civil 3D.

A total of ten (10) benchmarks were set for future construction use. The 20 foot channel corridor was surveyed including 50 feet on either side; this includes fifteen (15) cross sections along the channel corridor. Pipe inverts and sizes of drainage structures and culverts located have been included in the survey.

6.1 EASEMENTS

An existing easement description along the Springfield Lake outlet channel was provided by Summit County Engineers in the development of this report. See **Appendix G** for the Springfield Lake Outlet Elevations study. As shown at the end of the study in **Appendix G**, there is an existing "Width of Right of Way 16.5 feet each side of center line of ditch." This easement has been added into the Preliminary Plans in **Appendix A** from the Conceptual Plans in **Appendix S**. Proposed easements along the chosen proposed outlet channel alignment are listed below in **Table 3**. Approximate locations of proposed permanent easements is shown in the Conceptual Plans in **Appendix S**.

No.	Parcel ID	Approximate Conceptual Plan Stations	Approximate Preliminary Plan Stations	Approximate Dimensions/Area	Address	Owner
1	5110846	STA 9+00 to STA 10+50	106+80 to 108+30	1,125 SF	CANFIELD RD	OHIO EDISON CO
2	5109154	STA 11+20 to STA 11+70	108+90 to 109+50	290 SF	2755 E. WATERLOO RD	HENRY DANIEL W
3	5109141	STA 13+00 to STA 15+50	110+80 to 113+30	3,845 SF	2755 E. WATERLOO RD	HENRY DANIEL W
4	5107269	STA 15+50 to STA 16+50	113+30 to 114+30	2,007 SF	1293 SHANAFELT AVE	HENRY DANIEL
5	5106416	STA 16+50 to STA 17+00	114+30 to 114+80	1,170 SF	1283 SHANAFELT AVE	LANHAM JAMES E
6	5106417	STA 16+50 to STA 17+00	114+30 to 114+80	333 SF	1283 SHANAFELT AVE	LANHAM JAMES E
7	5110178	STA 17+00 to STA 22+75	114+80 to N/A	10,000 SF	1259- 1273 SHANAFELT AVE	STORAGE ZONE ENTERPRISES LLC

Table 3: Proposed Easements within Project Area

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 15 of 37

8	5110796	STA 21+00 to STA 23+25	N/A	1,600 SF	1116 CANTON RD	OREILLY AUTO ENTERPRISES LLC
9	5109983	STA 23+25 TO STA 23+50	N/A	65 SF	CANTON RD	HANNAH G STEPHEN & MARY K
10	5108991	STA 23+50 TO STA 25+00	N/A	160 SF	1100 CANTON RD	HANNAH G STEPHEN & MARY K
11	5103735	STA 22+75 TO STA 24+25	N/A	2,260 SF	1253 ABINGTON RD	CUMMINGS WILLIAM TRUSTEE
12	5105429	STA 24+25 TO STA 24+75	N/A	866 SF	1225 ABINGTON RD	PORTER SETH TRUSTEE
13	5107489	STA 24+75 TO STA 25+50	N/A	940 SF	1221 ABINGTON RD	WINCH BRENDON LEE
14	5102890	STA 25+50 TO STA 26+50	N/A	1,720 SF	1213 ABINGTON RD	POWELL BOBBIE J
15	5100521	STA 26+50 to STA 32+25	N/A	0.80 ACRE	ABINGTON RD	BELACIC FRANK J III
16	5100510	STA 32+25 to STA 33+25	N/A	6,250 SF	CANTON RD	BELACIC FRANK J III
17	5100511	STA 33+25 to STA 34+50	N/A	1,550 SF	CANTON RD	BELACIC FRANK J III
18	5100512	STA 34+25 to STA 34+50	N/A	141 SF	SHADYBROOK (REAR) DR	BELACIC MICHAEL
19	5100504	STA 34+50 to STA 38+50	N/A	0.40 ACRE	SHADYBROOK DR	BELACIC FRANK J III
20	5108782	STA 34+00 to STA 34+50	N/A	840 SF	SHADYBROOK DR	SAMPLE MOLLY E
21	5100531	STA 38+25 TO STA 40+00	N/A	945 SF	954 CANTON RD	FRANKS MOBILE HOMES PARK LCC
22	5108201	STA 38+50 to STA 39+50	N/A	1,940 SF	905& 1/2 SHADYBROOK DR	MORRIS KEITH O

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 16 of 37

23	5108875	STA 39+50 TO STA	N/A	4,875 SF	905 SHADYBROOK DR	HUFF LENA M
		41+00 STA 41+00			895 SHADYBROOK	
24	5108874	TO STA 44+25	N/A	0.30 ACRE	DR	GIBSON JESSE
		STA 44+25				
25	5106512	TO STA	N/A	3,392 SF	873 SHADYBROOK DR	GOVIA MARY LOU
		45+50				
		STA 45+50			849 SHADYBROOK	WEINSCHENK
26	5111102	TO STA	N/A	7,590 SF	DR	DANIEL
		47+50				THEO LEI
27	6763493	STA 47+50 TO STA	N/A	5,940 SF	SHADYBROOK DR	EBENEZER
27	0703455	49+25	N/A	5,540 51	SHADIBROOK DR	BAPTIST CHURCH
		STA 49+25				THEO LEI
28	5111101	TO STA	N/A	6,250 SF	825 SHADYBROOK DR	EBENEZER
		51+00			DR	BAPTIST CHURCH
		STA 51+50			2495 HILLSTOCK	
29	5103940	TO STA	N/A	3,486 SF	AVE	MILHOAN DOUG
		52+50				
20	F102041	STA 52+50	NI / A	2 400 55	2495 HILLSTOCK	
30	5103941	TO STA 53+00	N/A	2,460 SF	AVE	MILHOAN DOUG
		STA 53+00				
31	5103939	TO STA	N/A	2,025 SF	HILLSTOCK AVE	MILHOAN DOUG
		53+50	,	_,		
		STA 53+50				
32	5102976	TO STA	N/A	1,500 SF	2481 HILLSTOCK AVE	TROUT DAVID B
		54+00			AVE	

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 17 of 37

7.0 Hydrologic and Hydraulic (H&H) Modeling

This report describes the H&H modeling performed for the Springfield Lake and its outlet channel. Hydrologic models were developed using HEC-HMS software, version 4.10, to determine the design flows at the lake outlet, and several intermediate locations downstream along the outlet channel for various recurrence intervals. The event of specific interest is the 100-year event since this is the event of interest for FEMA. Hydraulic models were developed for the lake and its outlet channel using a 1-D steady state HEC-RAS to compute the water surface elevation along the outlet channel using HEC-RAS software, version 6.2. HEC-RAS results were used to assess the capacity of the existing bridges and culverts, and to provide adjustments to channel geometry to improve conveyance and minimize sediment deposition. An iterative procedure was used to ensure consistency between the HEC-HMS and HEC-RAS models at the lake outlet structure.

7.1 LAKE OUTLET HYDROLOGY

The watershed at the lake outlet is shown in **Figure 2**, which closely matches the watershed shape provided in the CT study in **Figure 3**. The watershed was divided into 4 subbasins, based on basin development patterns, topography and the State of Ohio OSIP LiDAR information (2007). The total area of these subbasins is 3.58 sq mi. NOAA Atlas 14 database was employed to generate the design storm for return periods ranging from 5 years to 100 years. The design storm duration was adopted as 24 hours.

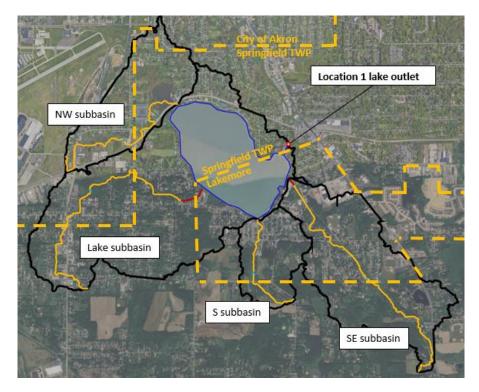


Figure 2: Delineation of Springfield Lake Watershed at the Lake Outlet

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 18 of 37

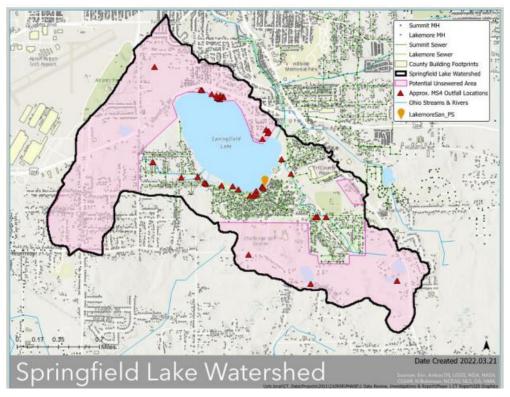


Figure 3: Springfield Lake Watershed Delineation by CT Consultants

Springfield Lake Phase 1 Data Review, CT Consultants, 2022.

The SCS Runoff Curve Number method was used to compute the runoff losses based on soil type and land use type within each subbasin. The soil type distribution and land use distribution of the study area are shown in **Figure 4** and **Figure 5**, respectively. The runoff curve number data (AMC II conditions) for the applicable land use and soil types is shown in **Table 4**. By intersecting the runoff curve number values for the various land use and soil types within the drainage area, the composite runoff curve number for each subbasin to the lake outlet was computed in **Table 5**.

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 19 of 37

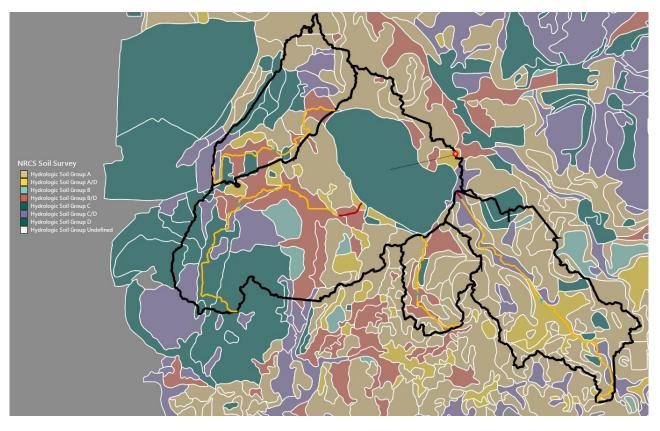


Figure 4: Soil Group Distribution

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 20 of 37

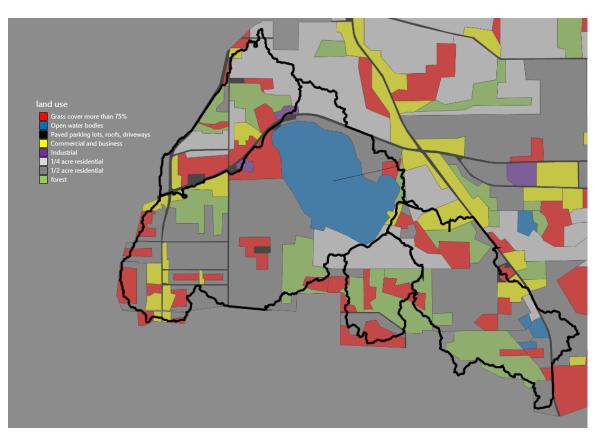


Figure 5: Land Use Distribution

Table 4: Runoff Curve Number for Hydrologic Soil-Cover Complexes

Land use	Soil Group A	Soil Group B	Soil Group C	Soil Group D
Grass cover more than 75%	39	61	74	80
Open water bodies	100	100	100	100
Paved parking lots, roofs, driveways	98	98	98	98
Commercial and business	89	92	94	95
Industrial	81	88	91	93
1/4 acre residential	61	75	83	87
1/2 acre residential	54	70	80	85
forest	45	60	73	79

The SCS lag method was employed to transform the effective rainfall into surface runoff. The time of concentration, Tc, is determined based on the flow travel time from the farthest point within the subbasin to the outlet point. The travel flow path includes various flow segments such as overland flow (100 ft at maximum), shallow concentrated flow, open channel flow, and flow through ponded water (zero flow travel time). In **Figure 2**, overland flow segment, shallow concentrated flow segment, and open channel flow segment are represented by orange, yellow, and red, respectively. Lag time was defined as 0.6Tc. A summary of subbasin parameters is presented in **Table 5**. A breakdown of the longest flow path is available in **Appendix H.**

Subbasin #	Area (sq mi)	RCN	Tc (min)	Lag time (min)	Impervious area ratio (%)
Lake subbasin	1.87	76.33	252.32	151.39	60
NW subbasin	0.52	71.78	126.16	75.70	65
S subbasin	0.30	54.82	69.30	41.58	30
SE subbasin	0.88	59.30	135.14	81.08	50
Sum	3.6	69.66	252.32	151.39	55

Table 5: Subbasin Parameters

As depicted in **Figure 5**, Springfield Lake is situated within an urbanized area with stormwater drainage systems connected to the lake, significantly affecting the natural hydrological processes of the area. To account for these effects, the HEC-HMS model was modified by adjusting the impervious area ratio for the more urbanized subbasins.

In the HEC-HMS analysis, the modified Puls method was employed to simulate the outflow routing through the lake. As per DLZ's field inspection, the flow control structure at lake outlet features a rectangular sharp crested weir with a width of approximately 15 ft. The crest of the weir is at 1074.75 ft, which was used as the normal pool elevation in the analysis. The elevation of high ground surrounding the outlet level is 1078 ft or higher according to the State of Ohio OSIP LiDAR data.

It should be noted that the weir elevation determined by DLZ field survey is quite close to the weir information documented in the 2015 survey report (See **Appendix G** – Springfield Lake Outlet Elevations Report of Survey by Summit County Engineer's Office, 2015). The 2015 survey report indicates the crest of the weir is at approximately 1074.9 ft using the NAVD 88 referenced datum. See **Appendix I** for Vertical Datum Conversion Methodology.

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 22 of 37

The weir discharge coefficient, Cd, for the outlet weir, is an important parameter for accurately predicting water levels and flows in the lake and at the entrance to the outlet channel. During high flow events, the outlet weir is subject to submergence effects, as the water depth on the downstream side of the weir is comparable to or even higher than the maximum pool level predicted by HEC-HMS for certain flow events.

In this case, for the 100-year event, an iterative adjustment of the Cd value was performed, which resulted in a Cd value of 1.5 for the 100-year event. The adjustment process involves conducting multiple HEC-HMS and HEC-RAS runs in a trial-and-error approach. During each iteration, different Cd values were applied, and the resulting water levels and outflows predicted by HEC-HMS were compared against the corresponding HEC-RAS model results. The Cd value was adjusted iteratively until a satisfactory match for outlet flows and lake elevations was achieved between the HEC-HMS and HEC-RAS models.

Table 6 provides the elevation-area relationship for the lake which was obtained from the State of Ohio OSIP

 LiDAR data.

Elevation (ft)	Area (acre)	Incremental storage volume (ac-ft)	Total storage volume (ac-ft)
1074.7	290	0	0
1074.75 (outlet)	-	-	-
1075.0	291	87	87
1076.0	294	292	380
1077.0	297	295	675
1078.0	301	299	974
1079.0	305	303	1277

Table 6: Storage-to-Elevation Relationship

The resulting inflow hydrograph to the lake and outflow hydrograph exiting the lake during the 100-year flood condition from the HEC-HMS model results are shown in **Figure 6**. In the 100-year storm, HEC-HMS predicted a peak inflow discharge of 1797 cfs and a peak outflow discharge of 84 cfs. The maximum pool level was 1077.2 ft, at which the volume of runoff stored by the lake was 1019 ac-ft.

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 23 of 37

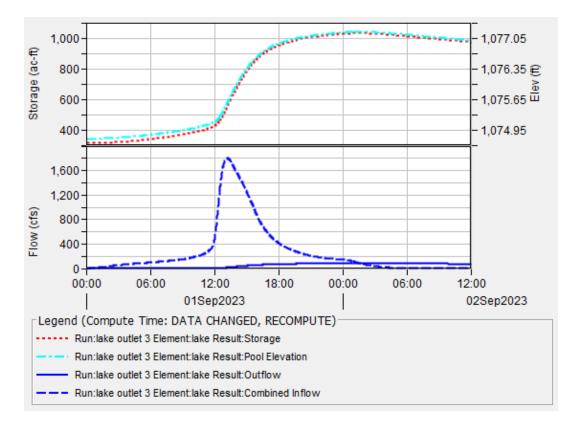


Figure 6: Inflow Hydrograph to the Lake and Routed Outflow Hydrograph in the 100-year Condition

There are significant challenges in determining tributary inflows discharging to the outlet channel downstream of the lake outlet. Streamflow data from the downstream USGS gage (Gage No. 04205000) and the flow frequency values in the FIS report (effective for Summit County dated 04/19/2016, see **Appendix J**) were analyzed for this purpose. As shown in **Figure 7**, the gage site (Location 6) is situated 3 miles downstream of the Springfield Lake outlet (Location 1) and FIS flow frequency values are available at the downstream limit of this study (Location 5). Flood frequency analysis was conducted using the HEC-SSP software on the flow data at the gage site to determine the simulated peak flows for return periods ranging from 5-year to 100-year. See **Appendix K – Flood Frequency Analysis on the Gage Data Flow**. The drainage area at Locations 1, 5, 6 and the computed/available flow frequency values from various sources are presented in **Table 7**. Note that flow enters the lake outlet channel at three locations (2,3, and 4) downstream of the lake outlet.

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 24 of 37

Figure 7: Aerial Map Showing the Locations of Interest

Table 7: Peak Flow Discharges at Lake Outlet and Downstream Locations with Data	4
---	---

Location	Source	DA (sq mi)	Q5 (cfs)	Q10 (cfs)	Q50 (cfs)	Q100 (cfs)
1	HEC-HMS/HEC-RAS	3.6	29	38	67	84
2	StreamStats ratio	-	61	90	148	175
3	StreamStats ratio	-	88	137	224	263
4	StreamStats ratio	-	100	159	260	306
5	FIS report	8.2	-	186	297	348
6	HEC-SSP (gage)	9.7	184	226	324	370

7.2 OUTLET CHANNEL HYDROLOGY

Figure 7 illustrates several locations of interest within the project limit. These include Locations 2, 3, and 4, where tributary flows join the outlet channel, resulting in an increase of peak flow. DLZ field verified the existence of pipes and culverts that deliver the tributary flow into the outlet channel at these locations.

Due to the budget and time constraints, comprehensive watershed analyses were not carried out at these intermediate locations to obtain the flow hydrograph. Instead, this study estimated the stream peak flow by adding the peak inflow from each contributing watershed. These intermediate flow estimates are approximate, because the adding of peak flows does not account for time impacts (at each of the locations along the outlet channel, factors such as the storage, travel time, and constriction due to culvert along contributing creeks are not considered).

Peak flow estimates contributed by the intermediate watersheds along the outlet channel were obtained with the help of USGS StreamStats. The HEC-HMS/HEC-RAS peak flow data at lake outlet (Location 1) and FEMA values (Location 5) were utilized to determine the total flow increase between these two locations. Linear interpolation based on ratios of peak flows predicted by StreamStats was employed to assign the flow from each tributary watershed such that it equals the total flow increase required between Location 1 and 5. The results are summarized in **Table 7**. Details are provided in the **Appendix L – StreamStats Peak Flow Estimate**.

Note that the iterative process for determining the Cd at the lake outlet requires re-computation of the tributary inflow every time the flow at Location 1 is changed.

7.3 EXISTING OUTLET CHANNEL AND CULVERT CAPACITY EVALUATION

An approximate hydraulic analysis based on the Manning equation was conducted to evaluate the capacity of the existing channel sections just upstream of each hydraulic structure along the lake outlet channel. Though the Manning equation analysis shows that the water surface elevation at each cross section does not surcharge the adjacent structure for the 100-year event, such analysis may not represent the true conditions when all stream cross sections are considered as a unit.

Consequently, for a more detailed analysis, a 1-D steady state HEC-RAS model was created that covered the entire stream and all the roadway crossings starting upstream at the lake outlet to the downstream end of the project limit (**Figure 8**). The channel geometries were developed using DLZ field surveyed stream cross section data, merged with the overbank data obtained from the OGRIP topographic map. Manning "n" values used in the model were based on the field observations of the existing channel and floodplain conditions. The known maximum pool level from HEC-HMS analysis and the water surface elevation in the FIS report

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 26 of 37

were used to determine the upstream and downstream boundary conditions, respectively. Expansion and contraction losses of 0.3 and 0.1, respectively, were used for the cross sections, except at the two sections upstream and downstream of each roadway where the expansion and contraction coefficients were increased to 0.5 and 0.3, respectively to reflect impacts of manmade obstructions. Ineffective flow areas were established to identify the areas of the cross sections that do not have conveyance due to the embankment blockage of the roadway.

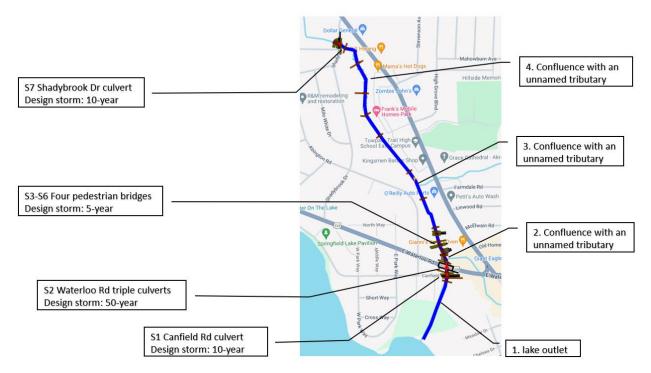
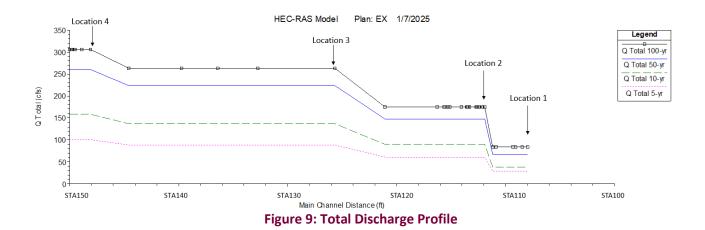


Figure 8: Sketch of HEC-RAS Model Showing the Location of Existing Structures

Figure 8 depicts a total of 7 roadway crossings. The design storm and check storm were determined in accordance with ODOT L&D vol. 2, based on roadway designation and the ADT. A summary of the 7 structures is included in **Table 8**.

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 27 of 37


Table 8: Summary of Roadway Crossings

Structure	Station	Description	Design storm	Check storm
S1	STA 108+44	Culvert under Canfield Rd	10-year	100-year
S2	STA 109+85	Three culverts under Waterloo Rd	50-year	100-year
S3	STA 111+95	Pedestrian bridge	5-year	100-year
S4	STA 112+50	Pedestrian bridge	5-year	100-year
S5	STA 113+42	Pedestrian bridge	5-year	100-year
S6	STA 115+27	Pedestrian bridge	5-year	100-year
S7	STA 148+40	Culvert under Shadybrook Rd	10-year	100-year

The peak flow values at Locations 1 to 4 (**Table 7**) were applied to the cross sections at the corresponding locations. The resulting discharge profile is shown in **Figure 9**.

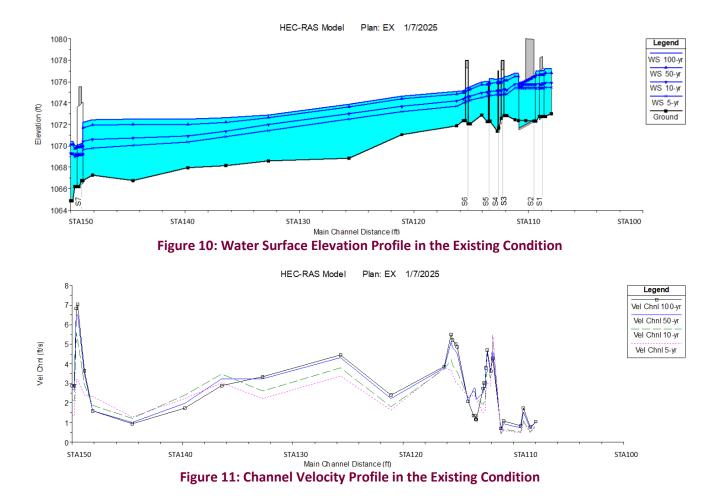

Figure 10 illustrates the water surface elevation profile. All the existing bridges and culverts meet ODOT requirements. During the design storm, the flow can pass the roadway crossing without rising above the low chord. During the check storm, the flow does not overtop the roadway (see **Table 9**).

Figure 11 illustrates the existing condition velocity profile in the main channel. The HEC-RAS analysis indicates low velocities (less than 1.5 fps) at the cross sections from STA 107+80 to STA 111+60 (near Canfield Road and Waterloo Road) and from STA 140+00 to 147+00 (STA 43+00* to STA 50+00* near Shadybrook Drive), as shown in **Figure 7.** These low velocities could result in siltation. These findings are consistent with photographs at these locations/structures taken during field inspection that show siltation/ debris accumulation in the channel. Detailed HEC-RAS results can be found in **Appendix M**.

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 28 of 37

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 29 of 37

Structure		Design flood		Check flood	
Location	Low chord (ft)	Storm	HW (ft)	Storm	HW (ft)
S1 Canfield Rd	1077.40	10-year	1075.88	100-year	1077.25
STA 108+44					
S2 Waterloo Rd	1076.73	50-year	1076.59	100-year	1076.97
STA 109+85					
S3 Pedestrian bridge	1077.10	5-year	1074.86	100-year	1076.49
STA 111+95					
S4 Pedestrian bridge	1076.20	5-year	1074.81	100-year	1076.30
STA 112+50					
S5 Pedestrian bridge	1075.50	5-year	1074.69	100-year	1076.27
STA 113+42					
S6 Pedestrian bridge	1077.31	5-year	1074.27	100-year	1075.46
STA 115+27					
S7 Shadybrook Rd	1074.05	10-year	1070.45	100-year	1072.16
STA 148+40					

Table 9: Hydraulic Parameters Adjacent to Structures in the Existing Condition Model

7.4 PROPOSED CONDITION OUTLET CHANNEL AND CULVERT CAPACITY EVALUATION

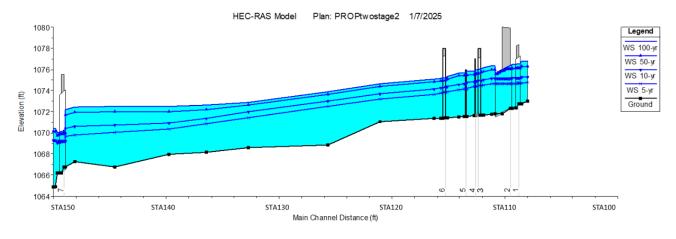
The HEC-RAS analysis has identified two critical locations within the existing outlet channel that require comprehensive stream regrading.

First, the upstream portion of the outlet channel, from STA 107+80 to STA 116+20 (from Canfield Road to the downstream pedestrian bridges), exhibits a negative longitudinal slope, amplifying the risk of siltation. To mitigate this issue, the streambed should be adjusted to establish a mild longitudinal slope ranging from 0.05% to 0.5%. Refinement of section geometries are implemented to align with the surrounding high ground. The existing side slope is maintained, or a 2H:1V side slope configuration is implemented to ensure lateral stability of the channel bank.

Second, the channel velocity is low within the areas between STA 107+67 and STA 111+57 (Canfield Road to Waterloo Road) and between STA 140+00 and STA 147+00 (STA 43+00* and STA 50+00*, upstream of Shadybrook Drive), raising a red flag regarding excessive sediment deposition. To address this, a series of measures are proposed. For the segment from STA 107+67 to STA 111+57, a two-stage channel design is proposed to modify the existing channel geometry. This approach narrows the cross-sectional width to

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 30 of 37

augment channel velocity. The first stage inset channel is designed to accommodate the low flow events, while the second stage benches are intended to manage high flow events. The design intent is to concentrate sediment deposition to the low velocity section of the channel between STA 140+00 and 147+00. It is crucial to schedule periodic sediment removal, especially within the low velocity zone between STA 140+00 and 147+00 and 147+00, to prevent blockages and ensure optimal channel performance.


HEC-RAS was employed to validate the hydraulic performance of proposed channel modifications. Updated cross section geometries were integrated into the existing condition HEC-RAS model to execute the proposed condition model. **Figure 12** illustrates that the proposed condition water surface level meets ODOT's design requirements, ensuring no water level increase in the check storm, and providing sufficient freeboard in the design storm (**Table 11**). In contrast to the existing condition, water levels decrease on average by 0.3 ft, with a maximum decrease of 0.73 ft just downstream of Waterloo Road culvert (STA 110+92) where the two-stage channel is proposed. The 100-year flood map is presented in **Appendix N**.

Between structures S2 and S3, a sudden increase in water level occurs in the 50-year and 100-year events. During these high-flow events, the inlet of S2 approaches its maximum capacity, and the flow control shifts toward the culvert outlet. Consequently, tailwater conditions start to impact the hydraulics of S2. While upsizing S2 could effectively improve this situation, a replacement is not proposed, as the existing structure meets the required criteria for both the design storm and check storm events. Furthermore, since S2 is located beneath Waterloo Rd, replacing it would be prohibitively expensive.

Figure 13 illustrates the channel velocity profile in the proposed condition. Within the segment from STA 107+67 to STA 111+57, the channel velocity is increased to 1.5 fps during the 50-year and 100-year flow scenarios. However, this velocity does not reach the desired threshold of 2 fps at which sediment deposition will be minimal. The culvert outlet velocity at Canfield Road and Waterloo Road will experience a slight increase. During the 50-year event, the outlet velocity at Canfield Road and Waterloo Road culverts rise above 1.73 fps and 2.65 fps, respectively. In the 100-year event, the outlet velocity at these culverts are increased above 2.22 fps and 3.1 fps, respectively. Detailed HEC-RAS results can be found in **Appendix M**. It is recommended that a sediment removal plan be implemented to address potential sediment buildup. A maintenance schedule can be found in **Section 10**.

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 31 of 37

Figure 12: Water Surface Profile in the Proposed Condition

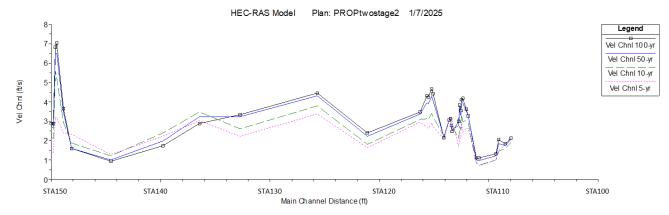


Figure 13: Channel Velocity Profile in the Proposed Condition

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 32 of 37

Structure		Design flood		Check flood	
Location	Low chord (ft)	Storm	HW (ft)	Storm	HW (ft)
S1 Canfield Rd	1077.40	10-year	1075.29	100-year	1076.76
STA 108+44					
S2 Waterloo Rd	1076.73	50-year	1076.07	100-year	1076.50
STA 109+85					
S3 Pedestrian bridge	1077.10	5-year	1074.49	100-year	1076.11
STA 111+95					
S4 Pedestrian bridge	1076.20	5-year	1074.41	100-year	1075.96
STA 112+50					
S5 Pedestrian bridge	1075.50	5-year	1074.18	100-year	1075.80
STA 113+42					
S6 Pedestrian bridge	1077.31	5-year	1073.85	100-year	1075.24
STA 115+27					
S7 Shadybrook Rd	1074.05	10-year	1070.45	100-year	1072.16
STA 148+40					

Table 10: Hydraulic Parameter Adjacent to Structures in the Proposed Condition Model

7.5 IMPACT OF TRIBUTARY DETENTION

A preliminary analysis was conducted to determine the impact of flow detention along the tributary streams that flow into the outlet channel. This involves the construction of detention ponds to regulate the tributary flow entering the outlet channel, which will reduce water levels along the outlet channel.

The proposed condition HEC-RAS model was rerun with lower inflows to the outlet channel. A reduction factor of 0.7 was applied to the peak flow from each of the tributary watersheds at Locations 2, 3, and 4. The Location of these tributary watersheds are shown in **Figure 7**. As shown in **Figure 14**, the flow discharge profile exhibits the expected decrease in flow rates. The corresponding water level profile indicates a reduction of 0.3 ft compared to the proposed condition baseline case (**Figure 15**). Despite these changes, the velocity of the outlet channel does not decrease significantly (**Figure 16**). The flood map can be found in **Appendix N**. While these findings are very promising, further discussion with the county is necessary to see if this is a desired option to pursue in the future.

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 33 of 37

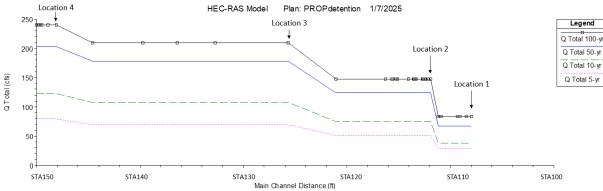


Figure 14: Total Discharge Profile in the Proposed Condition with Reduced Tributary Flows due to the Detention Pond

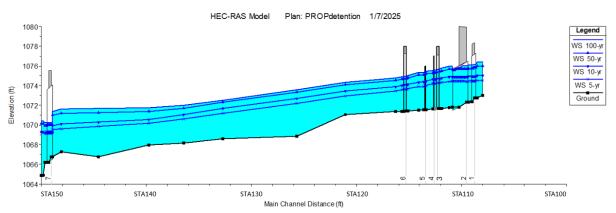


Figure 15: Water Surface Elevation Profile in the Proposed Condition with Reduced Tributary Flows due to the Detention Pond

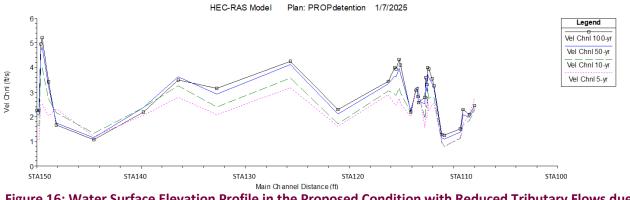


Figure 16: Water Surface Elevation Profile in the Proposed Condition with Reduced Tributary Flows due to the Detention Pond

As part of this preliminary analysis, the required storage capacity of the detention pond was assessed. **Table 11** presents the storage needed to achieve the flow reduction for each tributary. The detention pond was sized to accommodate the 100-year flood event, based on the methodology outlined in **Appendix O**.

Tributary location	Q100 (cfs)	Q100 with a Reduction Factor of 0.7 (cfs)	Required Storage Capacity (ac-ft)
2	89	62	4.0
3	88	62	3.9
4	43	30	1.9

Table 11: Tributary Peak Flow and Required Storage Capacity

7.6 H&H MODELING CONCLUSIONS

This report outlines the hydrological and hydraulic analyses conducted for the Springfield Lake watershed, outlet structure, and lake outlet channel. A HEC-HMS model was utilized to determine the lake outlet flow discharges, while flow estimates using ratios of USGS StreamStats was employed to estimate the flow discharges contributions at intermediate locations along the stream where tributary channels discharge to the outlet channel. It should be noted that the intermediate flow estimations are approximate.

Based on the current analysis, the outlet weir appears to be hydraulically adequate. The HEC-RAS analysis demonstrates that existing roadway crossings are capable of passing the required flow, with the design flood not surcharging the structures and the check flood not overtopping the structures.

Two significant hydraulic issues were identified, particularly in proximity to the existing hydraulic structures. There is a potential of sediment accumulation in the outlet channel due to low channel velocity. The longitudinal slope is not consistently positive. To mitigate these issues, adjustments should be made to the cross-section geometries. A two-stage channel geometry is proposed for the segment near the Canfield Road and Waterloo Road, while modifications to the channel streambed elevation ensure a positive slope over the entire outlet channel length. Though these improvements do increase the velocities at these sections, several sections (STA 107+67 to STA 111+57, and STA 43+00* and STA 50+00*) will still have velocities below the threshold velocity of 2 fps. Consequently, regular maintenance comprised of periodic sediment/debris removal is recommended at these locations.

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 35 of 37

8.0 Structural Inspection

A structural visual inspection of the Springfield Lake Overflow Outlet Structure was performed on April 10, 2024. A summary of findings is available in **Appendix P**.

9.0 Geotechnical Evaluation

A geotechnical subsurface exploration was conducted as part of this study, the Final Report of Subsurface Exploration is available in **Appendix Q**.

10.0 Preliminary Cost Estimate

A Class 4 AACE Estimate of Probable Construction Cost was created as part of Task B and is included in **Appendix R.**

11.0 Recommended Maintenance Schedule

The proposed channel improvements are intended to limit debris and sediment buildup to the area between Station 43+00 and 50+00. It has been determined that in some areas of the overflow channel, routine maintenance should be implemented to ensure proper performance. During surveying and field work investigations, DLZ identified areas of the outlet channel and culverts with debris and sediment buildup. It is recommended that the contract documents associated with this project include one (1) foot of sediment cleaning from the culverts under Waterloo Road and miscellaneous allowances for additional channel sediment cleaning. In some areas where there may not be access drives, temporary timber matting or similar methods may be placed over wetlands for maintenance access.

Construction will be in accordance with Ohio Revised Code 6131, Single County Drainage Improvements. Fees for future maintenance cost to be determined.

DLZ recommends the following maintenance schedule shown in Table 12.

Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 36 of 37

Table 12: Future Maintenance Schedule

Item	Description	Frequency
Inspect Overflow Channel from	Inspect this approximate area for	Monitor annually to record debris
STA 10+00 to 13+80 and STA	sediment and debris build up.	levels; Recommend observing
43+00 to STA 50+00	Remove debris if necessary.	sediment level within culverts to
		determine debris increases; Remove
		debris when greater than three (3)
		inches of debris is recorded.
Inspect Outlet Structure	Visually inspect the lake outlet	Perform structural inspection every
	structure during low flow periods.	five (5) years.
Inspect Overflow Channel from	Visually inspect the channel during	Monitor once every two (2) years to
STA 13+80 to 43+00	low flow periods.	record debris levels.
Canfield Road, Waterloo Road,	Areas noted during inspection that	Monitor annually to record debris
and Shadybrook Drive Culverts	contain sediment or debris build up	levels; Remove debris when greater
	in roadway culverts should be	than three (3) inches of debris is
	removed by an industrial pipe	recorded within culverts.
	cleaning company.	

12.0 Updates

This report was updated from the original "Task A – Conceptual Plan" to incorporate services performed under Task B and Task C.8, including the following changes:

- Preliminary Plans were developed under Task B, as shown in **Appendix A**.
- **Section 5.0 Additional Waters Investigation** was added to incorporate Task B investigations including threatened and endangered species study, desktop cultural resource study, and permit identification.
- Section 7.0 Hydrologic and Hydraulic (H&H) Modeling was updated to incorporate the Task B hydraulic modeling results.
- Section 9.0 Geotechnical Evaluation was added from Task C.8 including the Geotechnical Investigation Report in Appendix Q.
- Section 10.0 Preliminary Cost Estimate was added from Task C.8. A Class 4 AACE Estimate of Probable Construction Cost is included in Appendix R.

INNOVATIVE IDEAS EXCEPTIONAL DESIGN UNMATCHED CLIENT SERVICE Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan Page 37 of 37

13.0 Conclusions

DLZ studied the Springfield Lake Outlet Structure & Channel and recommends improvements as shown in the Preliminary Plans to reduce debris build up, provide access for long term maintenance, and improve water quality in the channel. Tasks performed with this study to determine recommended improvements include surveying, waters investigation, hydraulic and hydrological analysis, constructability analysis, structure evaluations, channel design evaluations, geotechnical evaluation, cost evaluation, and maintenance evaluations. Based on our structural evaluation, no changes to the Outlet Structure are currently recommended. However, modifications to the outlet channel geometry at strategic locations to improve velocity, along with access routes for improved maintenance, are recommended. The preliminary Class IV cost estimate for the channel improvements is \$900,000.

The following factors were considered prior to submitting the final recommendations:

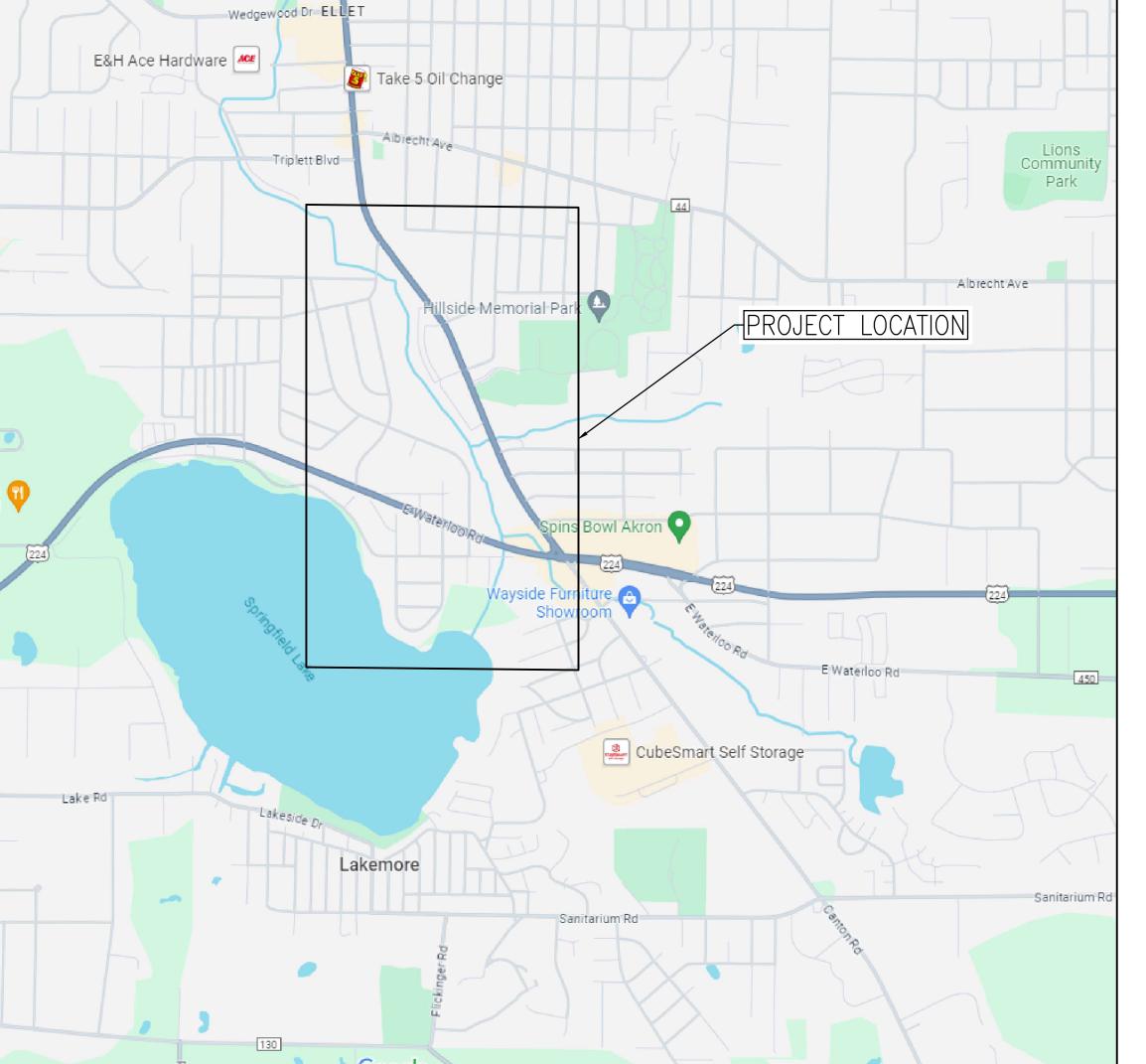
Favorable aspects of the recommended improvements include:

- Access to the channel is significantly improved with the proposed access routes.
- Frequency of maintenance operations will be reduced due to recommended channel improvements.
- Channel design concentrates debris buildup to specific areas along proposed access routes.
- Reduced debris buildup along the channel enhances aesthetic attributes for abutting property owners.
- The outlet structure itself is in good condition and does not need replaced.

Unfavorable aspects of the recommended improvements include:

- Disruption to nearby properties during construction.
- Proposed easements in some areas encroach on nearby properties.

DLZ determined that the recommended improvements are cost effective and constructable with limited impacts to stakeholders, residents, and businesses. Access for constructability and maintenance will be significantly improved with the proposed access routes. Easement acquisition will be minimized as a majority of the channel is within an existing Summit County easement. Channel improvements will reduce maintenance frequency and cost by improving channel flow velocity for stagnant areas, concentrating debris build up to more accessible areas, and improving the stability, water quality, and ecological benefits of the channel with natural stream features. Therefore, it is DLZ's opinion that the project is feasible and will provide benefits that exceed the estimated construction cost.


INNOVATIVE IDEAS EXCEPTIONAL DESIGN UNMATCHED CLIENT SERVICE Springfield Lake No. 1 Outlet Structure & Channel Study Task B – Preliminary Plan

APPENDIX A – Preliminary Plans

SUMMIT COUNTY ENGINEER'S OFFICE SUMMIT COUNTY, OHIO SURFACE WATER MANAGEMENT DISTRICT HUC 12-041100020303 SPRINGFIELD LAKE CHANNEL RESTORATION PRELIMINARY PLANS JANUARY 10, 2025

ttiBilvo	Massillon Rd	Triplett	-	Hilbish Ave
on			ALL OF THE OWNER	
	ſ	6.00	Uncle Mexicar	Hilbish Ave
2	4)			q
		130		

Sheet List Table			
Sheet Number	Sheet Number Sheet Title		
C-0.0	TITLE SHEET		
C-2.0	SURVEY CONTROL		
C-3.0	TYPICAL SECTIONS I		
C-3.1	TYPICAL SECTIONS II		
C-3.2	CHANNEL STABILIZATION DETAILS		
C-4.0	PLAN & PROFILE STA 100+00 TO STA 103+00		
C-4.1	PLAN & PROFILE STA 103+00 TO STA 108+00		
C-4.2	PLAN & PROFILE STA 108+00 TO STA 113+00		
C-4.3	PLAN & PROFILE STA 113+00 TO STA 116+83		
C-5.0 CHANNEL CROSS SECTIONS			
C-6.0	ACCESS DRIVE 1 PLAN & PROFILE		
C-6.1	ACCESS DRIVE 2-1 PLAN & PROFILE		
C-6.2	ACCESS DRIVE 2-2 PLAN & PROFILE		
C-6.3	ACCESS DRIVE 3-1 PLAN & PROFILE		
C-6.4	ACCESS DRIVE 3-2 PLAN & PROFILE		
C-6.5	PAVEMENT DETAILS		

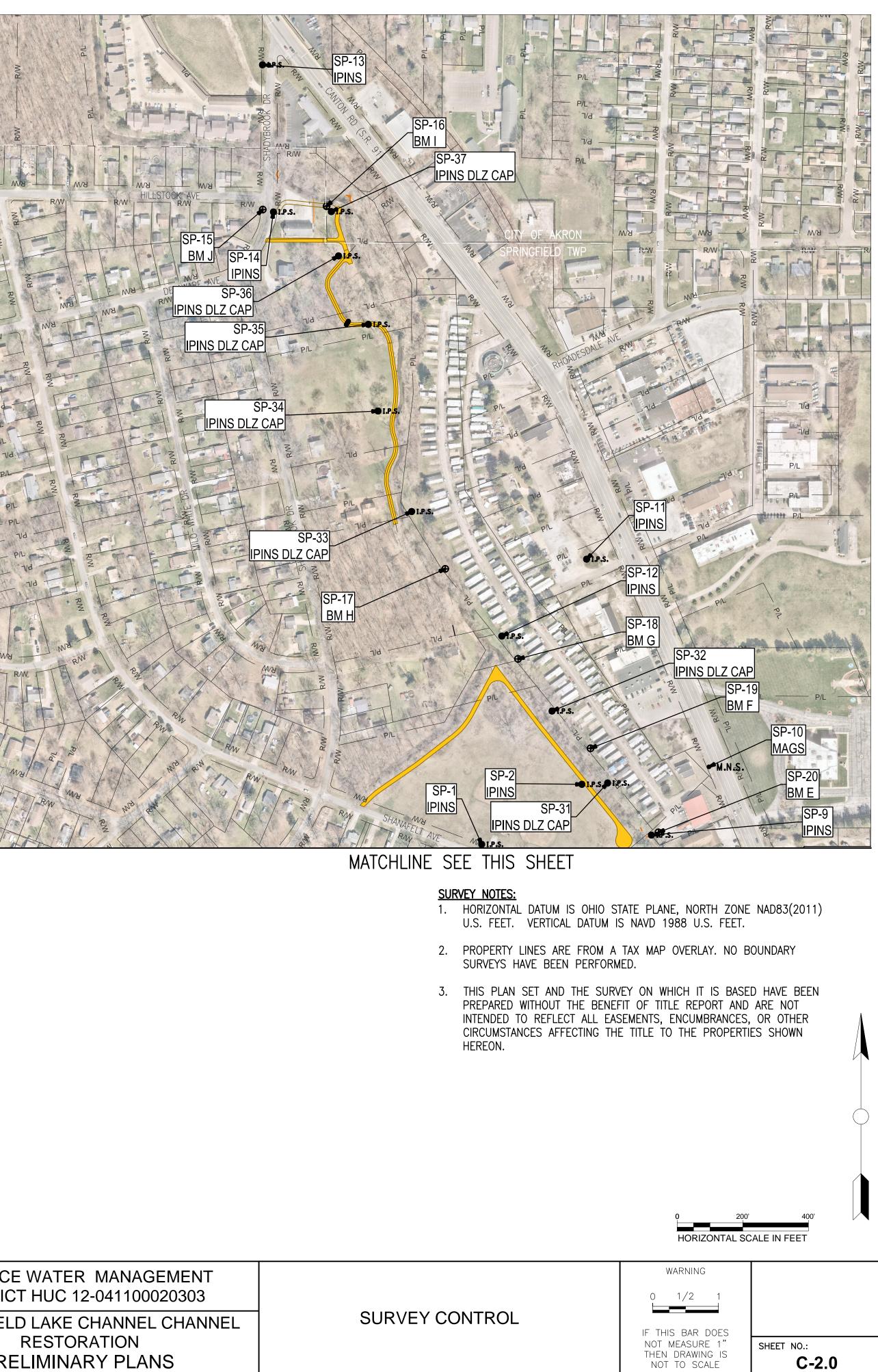
ALAN BRUBAKER, P.E., P.S. SUMMIT COUNTY ENGINEER

CHARLES HAUBER, P.E., P.S. ENGINEERING PROJECT MANAGER

PROJECT CONTROL
POSITIONING METHOD:GPS
MONUMENT TYPE:ODOT-VRS
VERTICAL POSITIONING
ORTHOMETRIC HEIGHT DATUM:NAVD88
GEOID:GEOID18A
HORIZONTAL POSITIONING
REFERENCE FRAME:NAD83(2011)
ELLIPSOID:GRS1980
MAP PROJECTION:Lambert Conformal Conic Projection
COORDINATE SYSTEM:Ohio State Plane, North Zone
COMBINED SCALE FACTOR: <u>1.000000</u>
ORIGIN OF COORDINATE
SYSTEM: <u>Northing: 0 USf</u> t Easting: 0 US ft Lat. :N 39° 27' 01.76097" Lon.:W 89° 28' 32.98476"

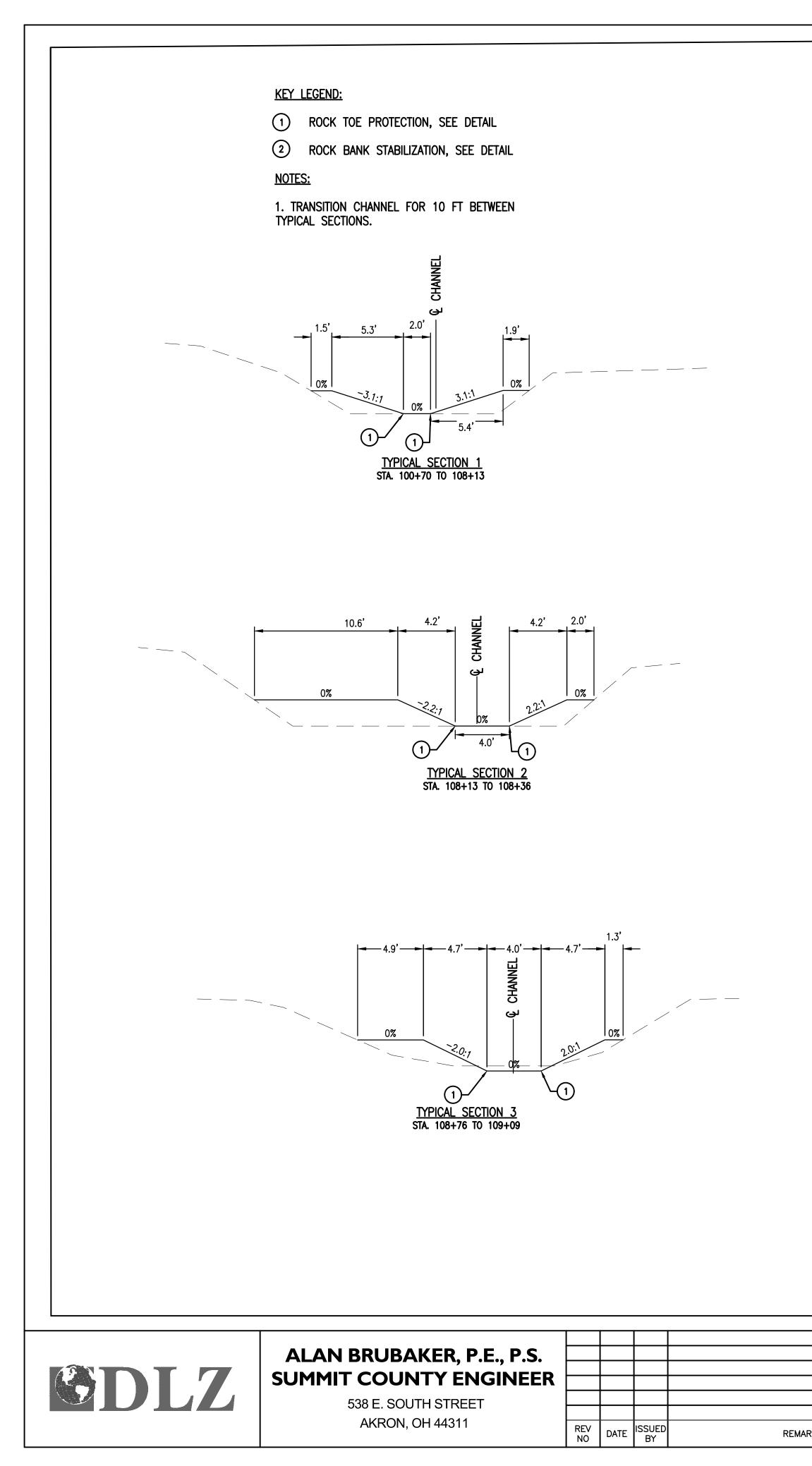
SUBMITTED BY Michael Evans DLZ OHIO, INC.

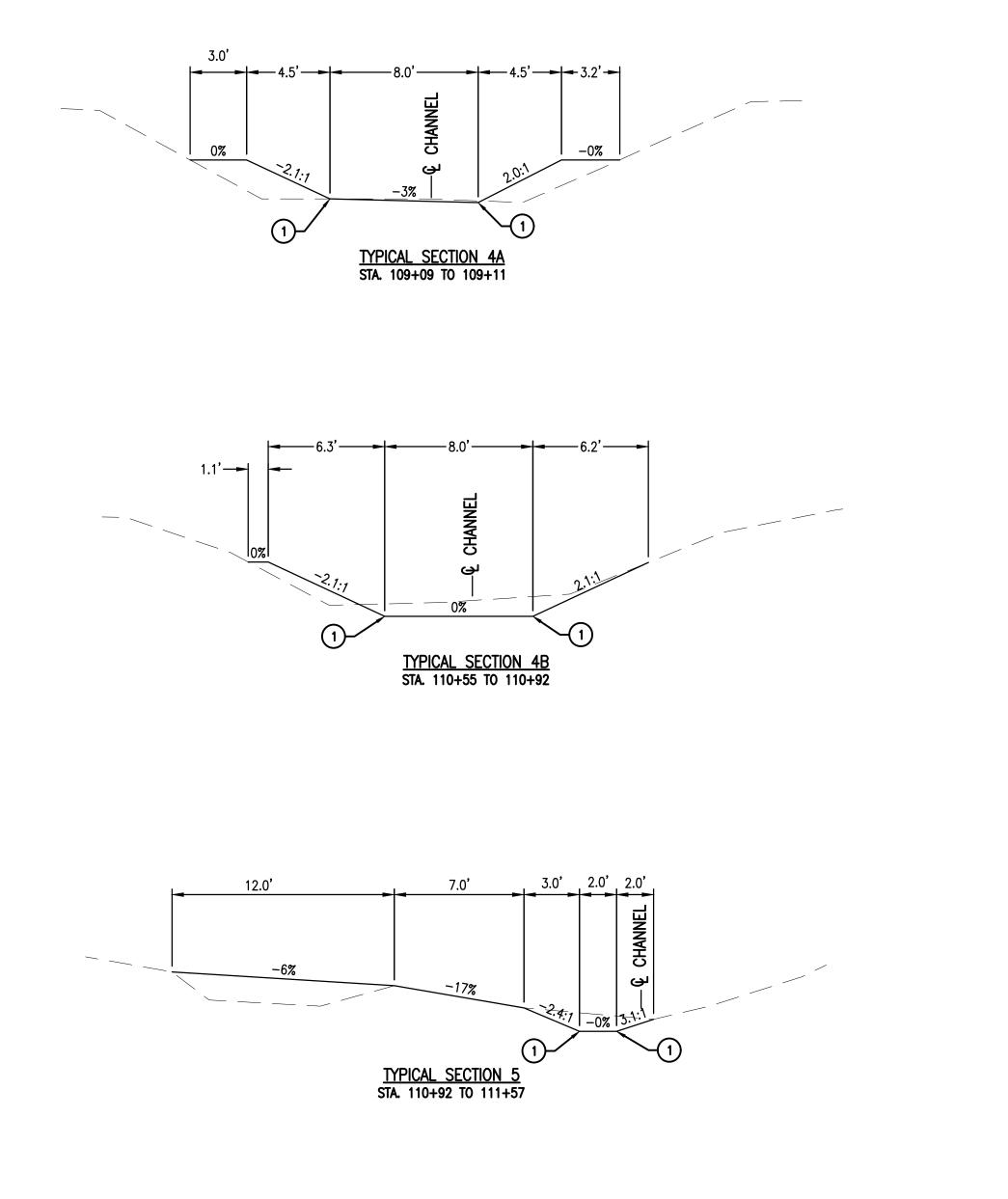
DATE 3-7-2025

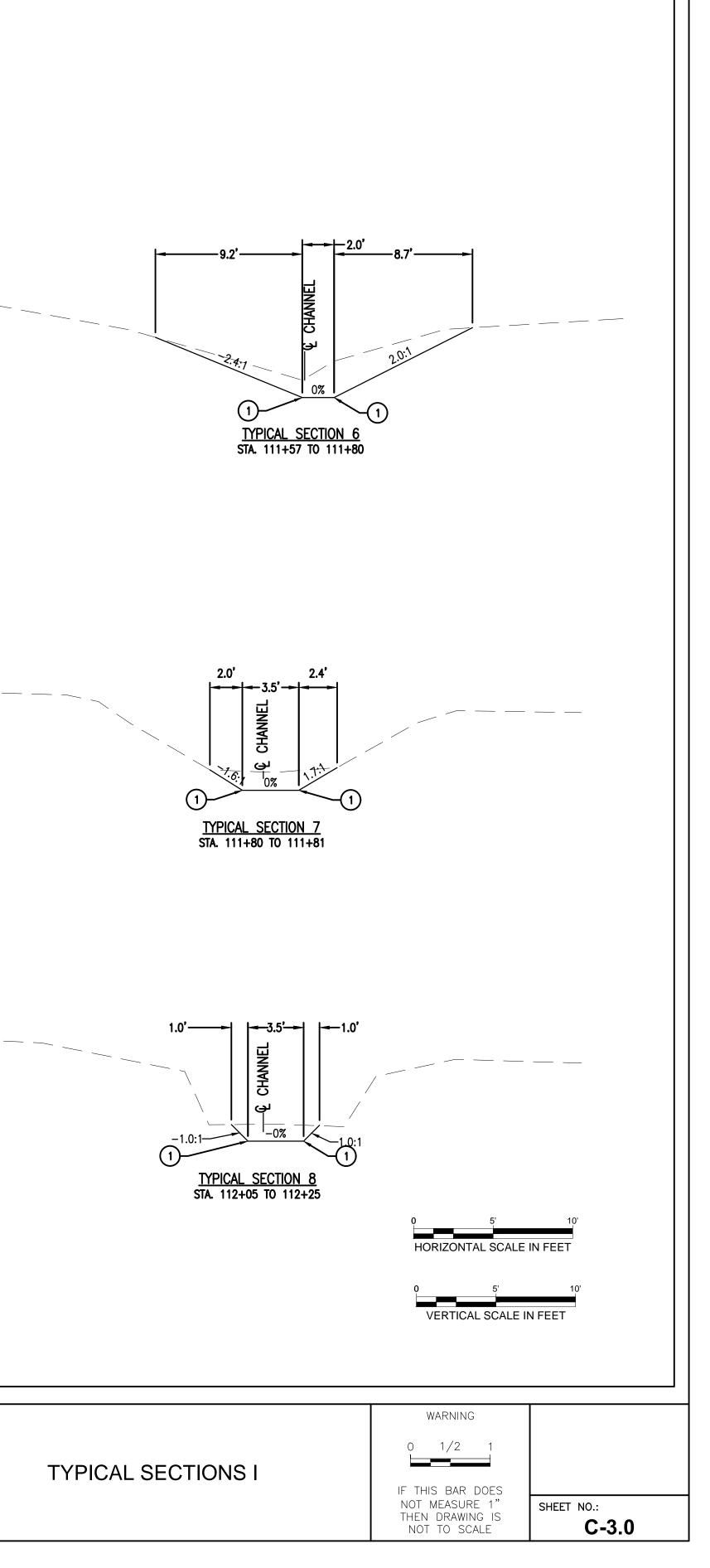

ALAN BRUBAKER, P.E., P.S. SUMMIT COUNTY ENGINEER

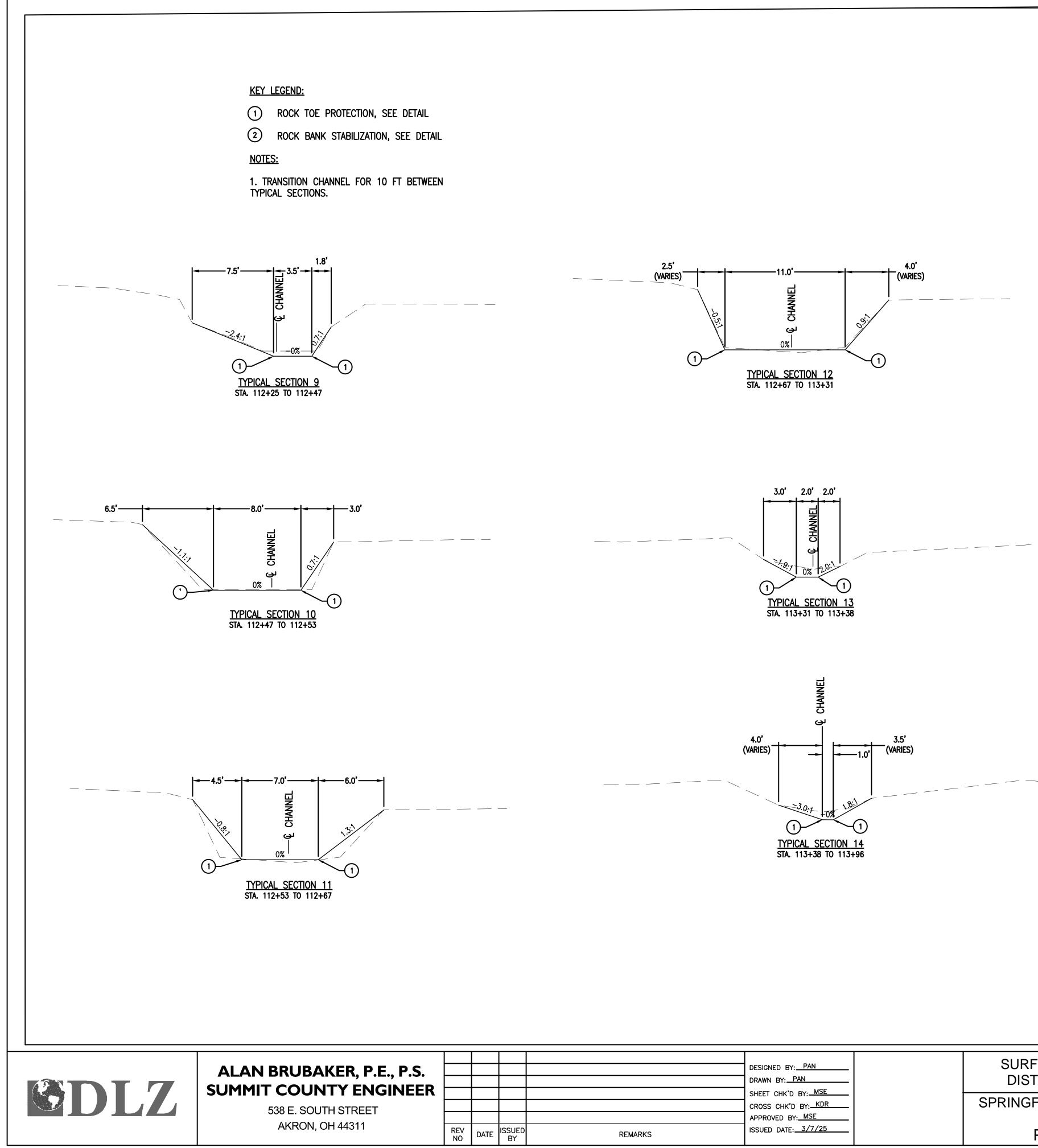
ODLZ

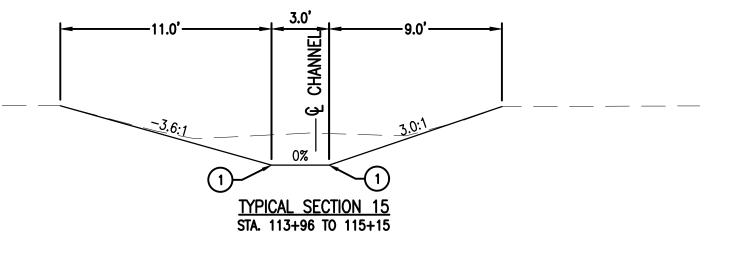
538 E. SOUTH STREET AKRON, OH 44311


-				
	REV NO	DATE	ISSUED BY	REMA

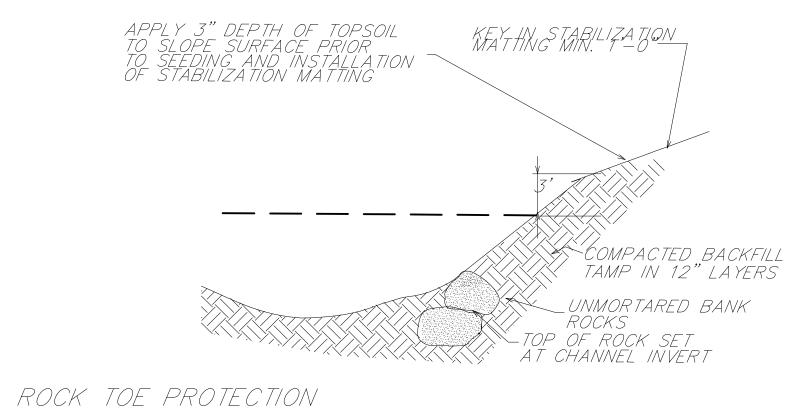

1-7-4					
M		SU	RVEY CONTROL	POINTS	
	POINT	NORTHING	EASTING	ELEVATION	DESCRIPTION
	SP-1	500,441.53	2,262,611.88	1075.66	IPINS
Pro P	SP-2	500,624.24	2,262,917.22	1075.84	IPINS
E WAR	SP-3	498,277.98	2,263,373.89	1075.68	IPINS
	SP-4	498,711.40	2,263,542.24	1075.26	IPINS
	SP-5	499,046.37	2,263,640.77	1078.67	IPINS
	SP-6	499,243.88	2,263,638.23	1082.77	MAGS
RW /	SP-7	499,601.68	2,263,421.84	1077.29	MAGS
I.C.	SP-8	499,926.27	2,263,336.54	1075.52	MAGS
Apple Trained	SP-9	500,469.71	2,263,128.89	1075.85	IPINS
M	SP-10	500,677.52	2,263,304.09	1079.74	MAGS
- B/W	SP-11	501,310.18	2,262,931.61	1077.79	IPINS
	SP-12	501,075.72	2,262,673.11	1078.43	IPINS
	SP-13	502,815.92	2,261,944.18	1089.93	IPINS
Phu Ph	SP-14	502,367.68	2,261,977.46	1073.45	IPINS
S.P.	SP-15	502,374.82	2,261,945.22	1073.24	BM J
	SP-16	502,384.78	2,262,139.61	1072.12	BM I
	SP-17	501,280.53	2,262,501.11	1072.50	BM H
CAP	SP-18	501,006.05	2,262,722.89	1076.04	BM G
	SP-19	500,733.75	2,262,943.66	1075.44	BM F
CAP	SP-20	500,477.74	2,263,150.26	1076.47	BM E
		,	2,200,100.20		
			URVEY CONTROL		
	POINT				
MM		S	URVEY CONTROL	. POINTS	
NM	POINT	S NORTHING	URVEY CONTROL EASTING	POINTS ELEVATION	DESCRIPTIO
A A A A A A A A A A A A A A A A A A A	POINT SP-21	S NORTHING 499,243.83	URVEY CONTROL EASTING 2,263,638.21	POINTS ELEVATION 1082.77	DESCRIPTIO BM C
NY RMN	POINT SP-21 SP-22	S NORTHING 499,243.83 499,931.88	URVEY CONTROL EASTING 2,263,638.21 2,263,304.01	POINTS ELEVATION 1082.77 1076.58	DESCRIPTIO BM C BM D
NN - NN	POINT SP-21 SP-22 SP-23	S NORTHING 499,243.83 499,931.88 498,786.38	URVEY CONTROL EASTING 2,263,638.21 2,263,304.01 2,263,643.28	POINTS ELEVATION 1082.77 1076.58 1078.34	DESCRIPTIO BM C BM D BM B BM A
NN RNN RNN	POINT SP-21 SP-22 SP-23 SP-24	S NORTHING 499,243.83 499,931.88 498,786.38 498,252.43	URVEY CONTROL EASTING 2,263,638.21 2,263,304.01 2,263,643.28 2,263,357.21	POINTS ELEVATION 1082.77 1076.58 1078.34 1076.06	DESCRIPTIO BM C BM D BM B BM A IPINS DLZ C
NN RM RNN	POINT SP-21 SP-22 SP-23 SP-24 SP-25	S NORTHING 499,243.83 499,931.88 498,786.38 498,252.43 498,932.22	URVEY CONTROL EASTING 2,263,638.21 2,263,304.01 2,263,643.28 2,263,357.21 2,263,621.59	POINTS ELEVATION 1082.77 1076.58 1078.34 1076.06 1077.32	DESCRIPTIO BM C BM D BM B BM A IPINS DLZ C
NY RM MA	POINT SP-21 SP-22 SP-23 SP-24 SP-25 SP-26	S NORTHING 499,243.83 499,931.88 498,786.38 498,252.43 498,932.22 498,794.73	URVEY CONTROL EASTING 2,263,638.21 2,263,304.01 2,263,643.28 2,263,643.28 2,263,643.29 2,263,621.59 2,263,640.87	POINTS ELEVATION 1082.77 1076.58 1078.34 1076.06 1077.32 1077.29	DESCRIPTIO BM C BM D BM B BM A IPINS DLZ C IPINS DLZ C MAGS
NY RW RW	POINT SP-21 SP-22 SP-23 SP-24 SP-25 SP-26 SP-27	S NORTHING 499,243.83 499,931.88 498,786.38 498,252.43 498,932.22 498,794.73 499,373.35	URVEY CONTROL EASTING 2,263,638.21 2,263,304.01 2,263,643.28 2,263,643.28 2,263,621.59 2,263,640.87 2,263,512.74	POINTS ELEVATION 1082.77 1076.58 1078.34 1076.06 1077.32 1077.29 1077.88	DESCRIPTIO BM C BM D BM B BM A IPINS DLZ C IPINS DLZ C MAGS
NN RM RW	POINT SP-21 SP-22 SP-23 SP-24 SP-25 SP-26 SP-27 SP-28	S NORTHING 499,243.83 499,931.88 498,786.38 498,252.43 498,932.22 498,794.73 499,373.35 499,447.63	URVEY CONTROL EASTING 2,263,638.21 2,263,304.01 2,263,643.28 2,263,643.28 2,263,621.59 2,263,621.59 2,263,640.87 2,263,512.74 2,263,466.39	POINTS ELEVATION 1082.77 1076.58 1078.34 1076.06 1077.32 1077.29 1077.88 1074.78	DESCRIPTIO BM C BM D BM B BM A IPINS DLZ C IPINS DLZ C MAGS IPINS DLZ C MAGS
AN AND AND AND AND AND AND AND AND AND A	POINT SP-21 SP-22 SP-23 SP-24 SP-25 SP-26 SP-27 SP-28 SP-29	S NORTHING 499,243.83 499,931.88 498,786.38 498,252.43 498,932.22 498,794.73 499,373.35 499,447.63 500,060.60	URVEY CONTROL EASTING 2,263,638.21 2,263,304.01 2,263,643.28 2,263,643.28 2,263,621.59 2,263,621.59 2,263,640.87 2,263,512.74 2,263,466.39 2,263,374.90	POINTS ELEVATION 1082.77 1076.58 1078.34 1076.06 1077.32 1077.29 1077.88 1074.78 1077.31	DESCRIPTIO BM C BM D BM B BM A IPINS DLZ C IPINS DLZ C MAGS IPINS DLZ C
NN RW NNR	POINT SP-21 SP-22 SP-23 SP-24 SP-25 SP-26 SP-26 SP-27 SP-28 SP-29 SP-30	S NORTHING 499,243.83 499,931.88 498,786.38 498,252.43 498,932.22 498,794.73 499,373.35 499,447.63 500,060.60 500,263.85	URVEY CONTROL EASTING 2,263,638.21 2,263,304.01 2,263,643.28 2,263,643.28 2,263,621.59 2,263,621.59 2,263,640.87 2,263,512.74 2,263,466.39 2,263,374.90 2,263,238.42	POINTS ELEVATION 1082.77 1076.58 1078.34 1076.06 1077.32 1077.29 1077.88 1077.31 1077.31 1077.25	DESCRIPTIO BM C BM D BM B BM A IPINS DLZ C IPINS DLZ C MAGS IPINS DLZ C IPINS DLZ C IPINS DLZ C
RIN RYN INNE	POINT SP-21 SP-22 SP-23 SP-24 SP-25 SP-26 SP-26 SP-27 SP-28 SP-29 SP-29 SP-30 SP-31	S NORTHING 499,243.83 499,931.88 498,786.38 498,252.43 498,932.22 498,794.73 499,373.35 499,447.63 500,060.60 500,263.85 500,628.27	URVEY CONTROL EASTING 2,263,638.21 2,263,638.21 2,263,643.28 2,263,643.28 2,263,643.28 2,263,640.87 2,263,640.87 2,263,640.87 2,263,512.74 2,263,466.39 2,263,374.90 2,263,238.42 2,262,995.48	POINTS ELEVATION 1082.77 1076.58 1076.06 1077.32 1077.29 1077.88 1077.88 1077.31 1077.25 1077.25 1072.49	DESCRIPTIO BM C BM D BM B BM A IPINS DLZ C IPINS DLZ C MAGS IPINS DLZ C IPINS DLZ C IPINS DLZ C IPINS DLZ C
RIN RYN INNE	POINT SP-21 SP-22 SP-23 SP-24 SP-25 SP-26 SP-26 SP-27 SP-28 SP-29 SP-29 SP-30 SP-31 SP-32	S NORTHING 499,243.83 499,931.88 498,786.38 498,252.43 498,252.43 498,932.22 498,794.73 499,373.35 499,447.63 500,060.60 500,263.85 500,628.27 500,847.48	URVEY CONTROL EASTING 2,263,638.21 2,263,304.01 2,263,643.28 2,263,643.28 2,263,640.87 2,263,621.59 2,263,640.87 2,263,512.74 2,263,466.39 2,263,374.90 2,263,238.42 2,262,995.48 2,262,826.17	POINTS ELEVATION 1082.77 1076.58 1078.34 1076.06 1077.32 1077.29 1077.88 1077.88 1077.31 1077.31 1077.25 1072.49 1072.45	DESCRIPTIO BM C BM D BM B BM A IPINS DLZ C IPINS DLZ C MAGS IPINS DLZ C IPINS DLZ C IPINS DLZ C IPINS DLZ C
RIN RYN INNE	POINT SP-21 SP-22 SP-23 SP-24 SP-25 SP-26 SP-26 SP-27 SP-28 SP-29 SP-29 SP-30 SP-30 SP-31 SP-32 SP-33	S NORTHING 499,243.83 499,931.88 498,786.38 498,252.43 498,932.22 498,794.73 499,373.35 499,447.63 500,060.60 500,263.85 500,628.27 500,847.48 501,455.20	URVEY CONTROL EASTING 2,263,638.21 2,263,638.21 2,263,643.28 2,263,643.28 2,263,643.28 2,263,640.87 2,263,621.59 2,263,640.87 2,263,512.74 2,263,466.39 2,263,374.90 2,263,238.42 2,262,995.48 2,262,826.17 2,262,398.63	POINTS ELEVATION 1082.77 1076.58 1078.34 1076.06 1077.32 1077.29 1077.88 1077.88 1077.31 1077.31 1077.25 1072.49 1072.45 1071.50	DESCRIPTIO BM C BM D BM B BM A IPINS DLZ C IPINS DLZ C MAGS IPINS DLZ C IPINS DLZ C IPINS DLZ C IPINS DLZ C IPINS DLZ C
RIN RYN INNE	POINT SP-21 SP-22 SP-23 SP-24 SP-25 SP-26 SP-26 SP-27 SP-28 SP-29 SP-29 SP-30 SP-30 SP-31 SP-32 SP-33 SP-34	S NORTHING 499,243.83 499,931.88 498,786.38 498,252.43 498,932.22 498,794.73 499,373.35 499,447.63 500,060.60 500,263.85 500,628.27 500,847.48 501,455.20 501,761.21	URVEY CONTROL EASTING 2,263,638.21 2,263,638.21 2,263,643.28 2,263,643.28 2,263,643.28 2,263,640.87 2,263,621.59 2,263,640.87 2,263,512.74 2,263,466.39 2,263,374.90 2,263,238.42 2,262,995.48 2,262,995.48 2,262,398.63 2,262,295.96	POINTS ELEVATION 1082.77 1076.58 1078.34 1076.06 1077.32 1077.29 1077.88 1077.31 1077.31 1077.25 1072.49 1072.49 1072.45 1071.50 1071.42	DESCRIPTIO BM C BM D BM B BM A IPINS DLZ C IPINS DLZ C MAGS IPINS DLZ C


C-2.0


	DESIGNED BY: <u>PAN</u> DRAWN BY: <u>PAN</u>	SURFACE WATER MANAGEMENT DISTRICT HUC 12-041100020303	
S	SHEET CHK'D BY: <u>MSE</u> CROSS CHK'D BY: <u>KDR</u> APPROVED BY: <u>MSE</u> ISSUED DATE: <u>3/7/25</u>	SPRINGFIELD LAKE CHANNEL CHANNEL RESTORATION PRELIMINARY PLANS	



	DESIGNED BY: <u>PAN</u> DRAWN BY: <u>PAN</u>	SURFACE WATER MANAGEMENT DISTRICT HUC 12-041100020303	
RKS	SHEET CHK'D BY: <u>MSE</u> CROSS CHK'D BY: <u>KDR</u> APPROVED BY: <u>MSE</u> ISSUED DATE: <u>3/7/25</u>	SPRINGFIELD LAKE CHANNEL CHANNEL RESTORATION PRELIMINARY PLANS	



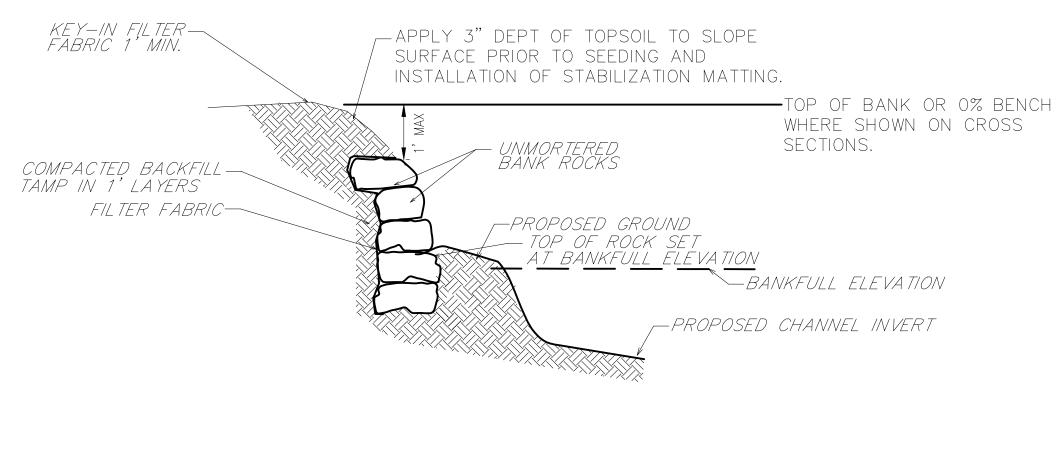
	DESIGNED BY: <u>PAN</u> DRAWN BY: <u>PAN</u>	SURFACE WATER MANAGEMENT DISTRICT HUC 12-041100020303	
MARKS	SHEET CHK'D BY: <u>MSE</u> CROSS CHK'D BY: <u>KDR</u> APPROVED BY: <u>MSE</u> ISSUED DATE: <u>3/7/25</u>	SPRINGFIELD LAKE CHANNEL CHANNEL RESTORATION PRELIMINARY PLANS	

HORIZONTAL SCALE IN FEET

VERTICAL SCALE IN FEET

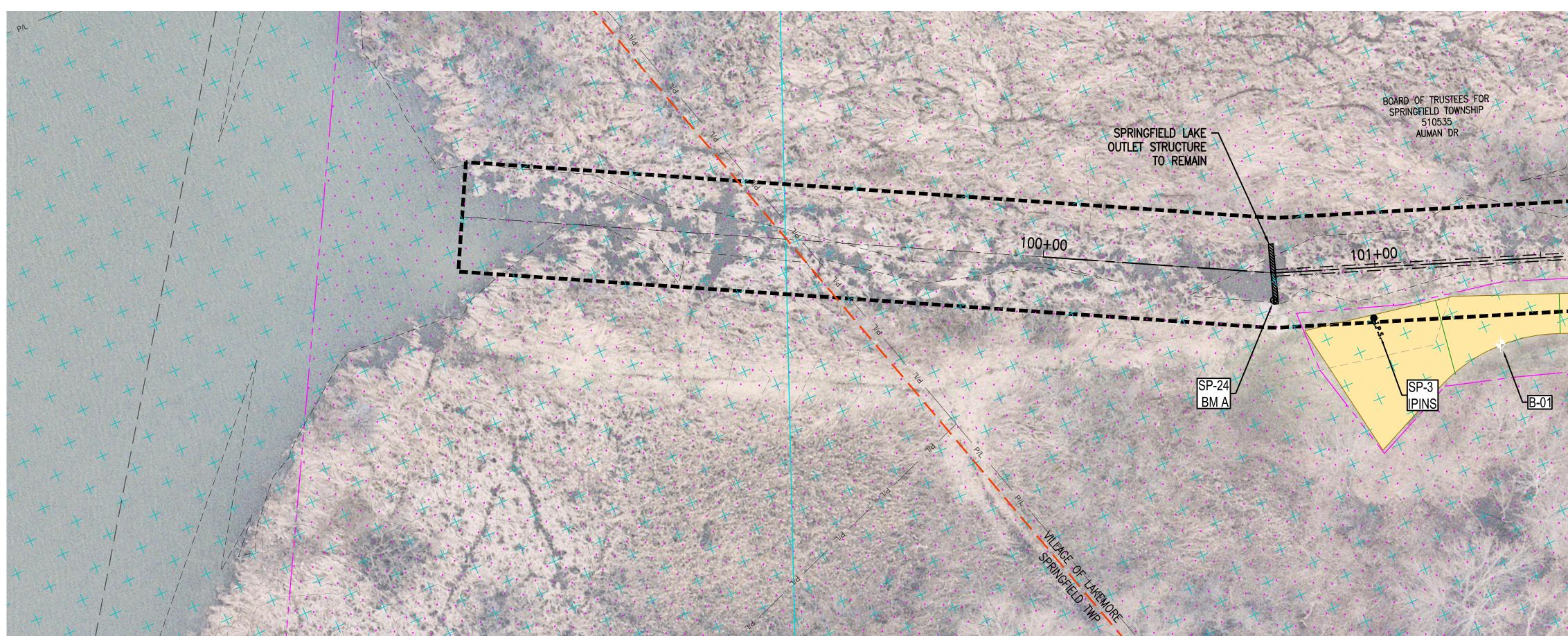
	WARNING	
TYPICAL SECTIONS II	0 1/2 1	
	NOT MEASURE 1" THEN DRAWING IS NOT TO SCALE	SHEET NO.: C-3.1

CROSS SECTION — TYPICAL


NOT TO SCALE

ALAN BRUBAKER, P.E., P.S. SUMMIT COUNTY ENGINEER

538 E. SOUTH STREET AKRON, OH 44311


			DESIGNED BY: PAN	SURFACE WATER MANAGEMENT		WARNING	
			DRAWN BY: PAN	DISTRICT HUC 12-041100020303		0 1/2 1	
			SHEET CHK'D BY: <u>MSE</u> CROSS CHK'D BY: <u>KDR</u>	SPRINGFIELD LAKE CHANNEL CHANNEL	CHANNEL STABILIZATION DETAILS	IF THIS BAR DOES	
			APPROVED BY: MSE	RESTORATION			SHEET NO.:
REV NO	DATE ISSUED BY	REMARKS	ISSUED DATE: <u>3/7/25</u>	PRELIMINARY PLANS		THEN DRAWING IS NOT TO SCALE	C-3.2

ROCK BANK STABILIZATION

SECTION— TYPICAL

NOT TO SCALE

LEGEND:

+ ·
· · · · · ·

ROCK BANK S	TABILIZATION	(SEE	DETAIL)
-------------	--------------	------	---------

the second stand and the second	a state of the second
0 0 0	ROCK TOE
	PERMANEN
	EXISTING D
	SANITARY F
	STORM PIP
*	EXISTING D
*	PERMANEN
NOTE	FENCE

NOTE: 1. LIDAR AND SURVEYED SURFACES ON PROFILE ARE ALONG THE CENTER OF THE CHANNEL. THE ACCURACY OF THE LIDAR SURFACE VARIES. EXISTING ELEVATIONS SHOWN ALONG BOTTOM OF PROFILE ARE INTERPELATED BETWEEN SURVEYED SECTIONS.

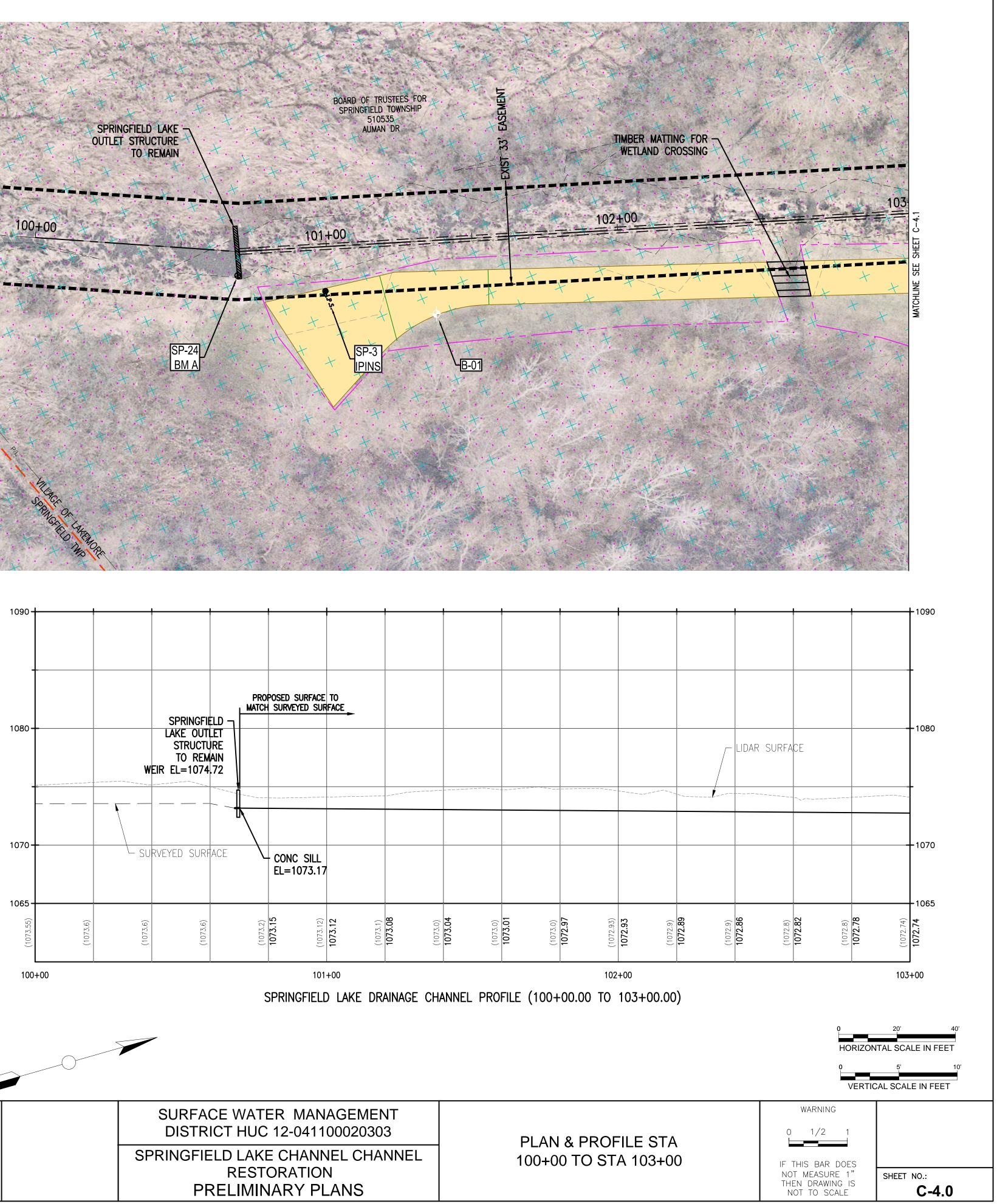
ALAN BRUBAKER, P.E., P.S. SUMMIT COUNTY ENGINEER

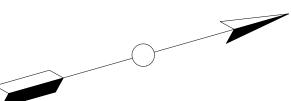
538 E. SOUTH STREET AKRON, OH 44311

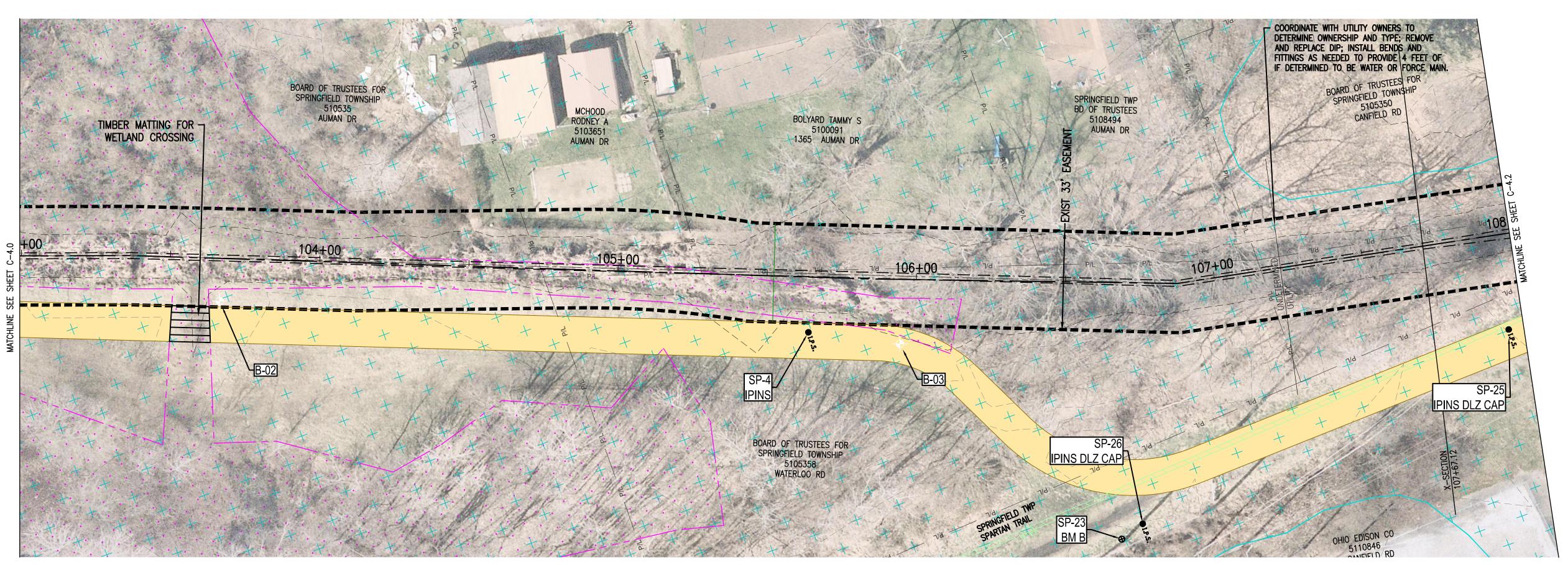
				DESIGNED BY: PAN	
				DRAWN BY: PAN	
				SHEET CHK'D BY: MSE	
				CROSS CHK'D BY: <u>KDR</u>	
				APPROVED BY: MSE	
REV NO	DATE	ISSUED BY	REMARKS	ISSUED DATE: <u>3/7/25</u>	

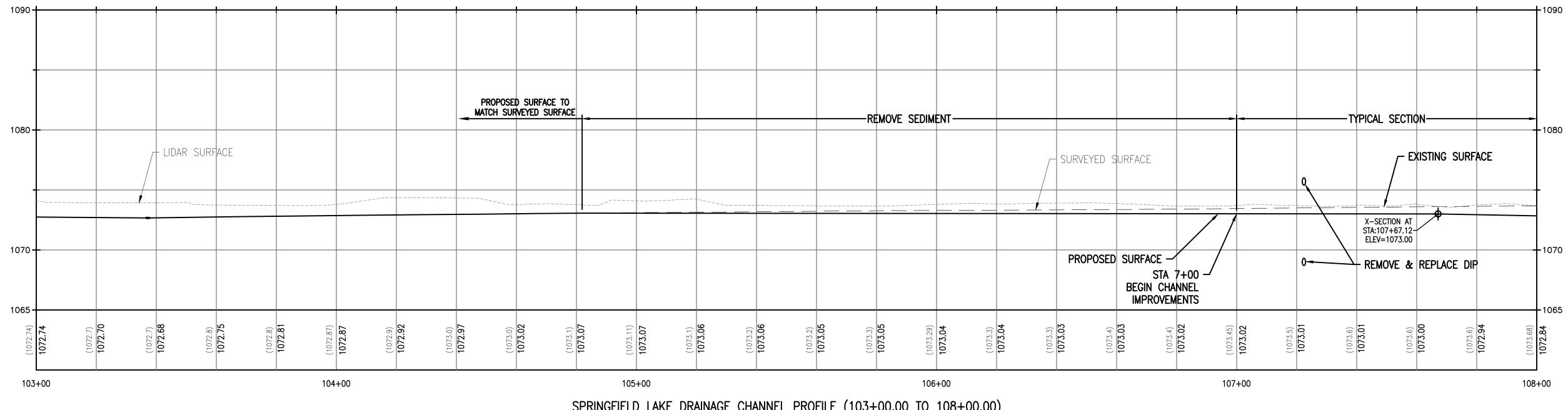
PROTECTION (SEE DETAIL)

NT EASEMENT


DITCH EASEMENT


PIPE


IPE

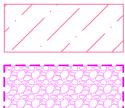

DITCH EASEMENT ENCROACHMENT

NT EASEMENT ENCROACHMENT

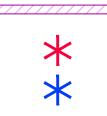
ALAN BRUBAKER, P.E., P.S. SUMMIT COUNTY ENGINEER

ODLZ


538 E. SOUTH STREET AKRON, OH 44311


				DESIGNED BY: <u>PAN</u> DRAWN BY: <u>PAN</u>	SURFACE WATER MANAGEMENT DISTRICT HUC 12-041100020303	
				SHEET CHK'D BY: <u>MSE</u> CROSS CHK'D BY: <u>KDR</u> APPROVED BY: <u>MSE</u>	SPRINGFIELD LAKE CHANNEL CHANNEL RESTORATION	
REV NO	DATE	ISSUED BY	REMARKS	ISSUED DATE: <u>3/7/25</u>	PRELIMINARY PLANS	

SPRINGFIELD LAKE DRAINAGE CHANNEL PROFILE (103+00.00 TO 108+00.00)


LEGEND:

.

FEMA FLOOD PLANE ZONE 'A'

DELINEATED WETLANDS

CONSTRUCTION/MAINTENANCE DRIVE (GRAVEL)

CONSTRUCTION/MAINTENANCE DRIVE (GRASS PAVERS)

CONSTRUCTION/MAINTENANCE DRIVE

PRIVATELY OWNED BRIDGE

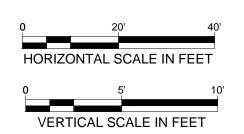
ROCK BANK STABILIZATION (SEE DETAIL)

ROCK TOE PROTECTION (SEE DETAIL)

PERMANENT EASEMENT

EXISTING DITCH EASEMENT

SANITARY PIPE

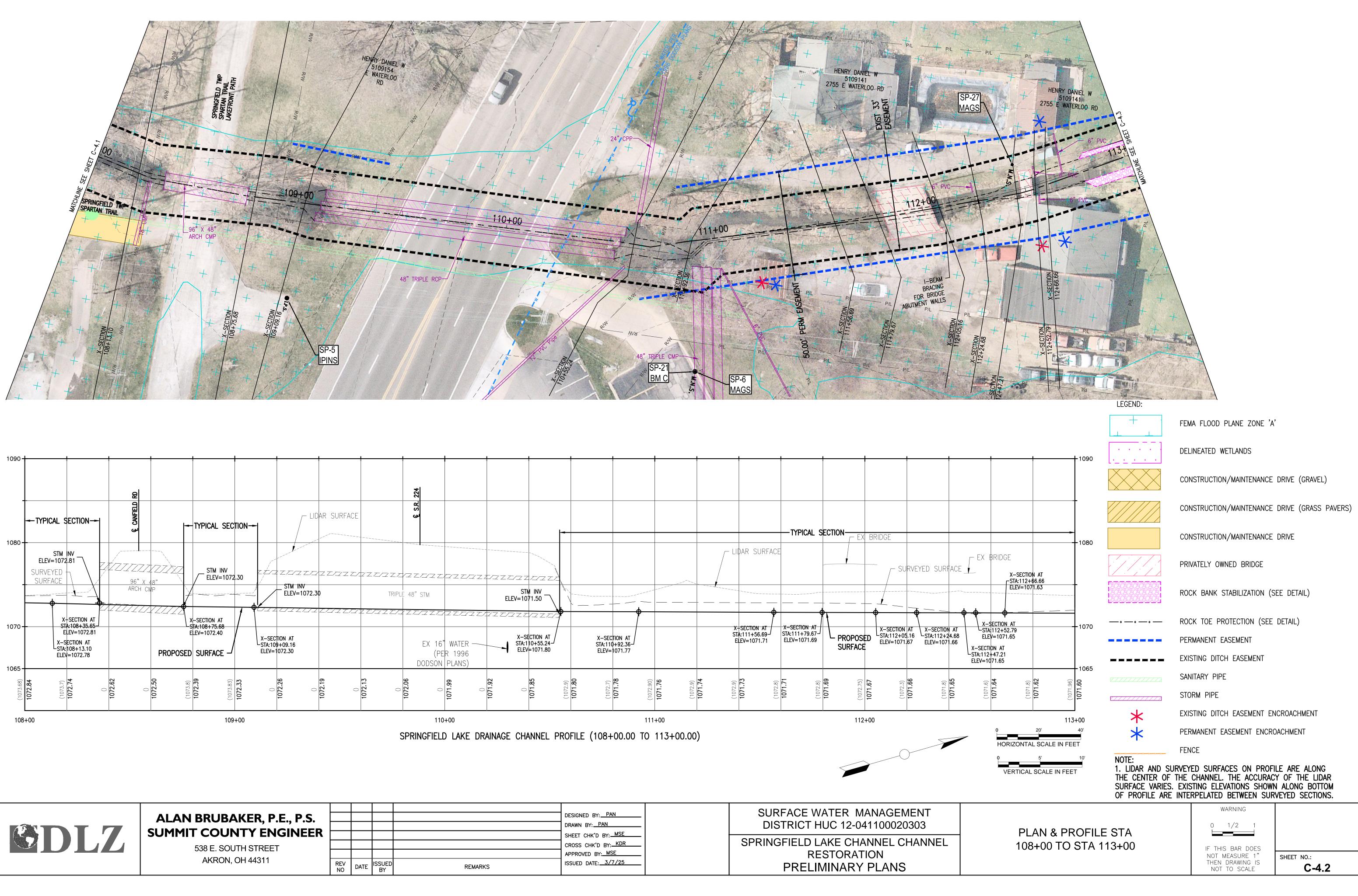

STORM PIPE

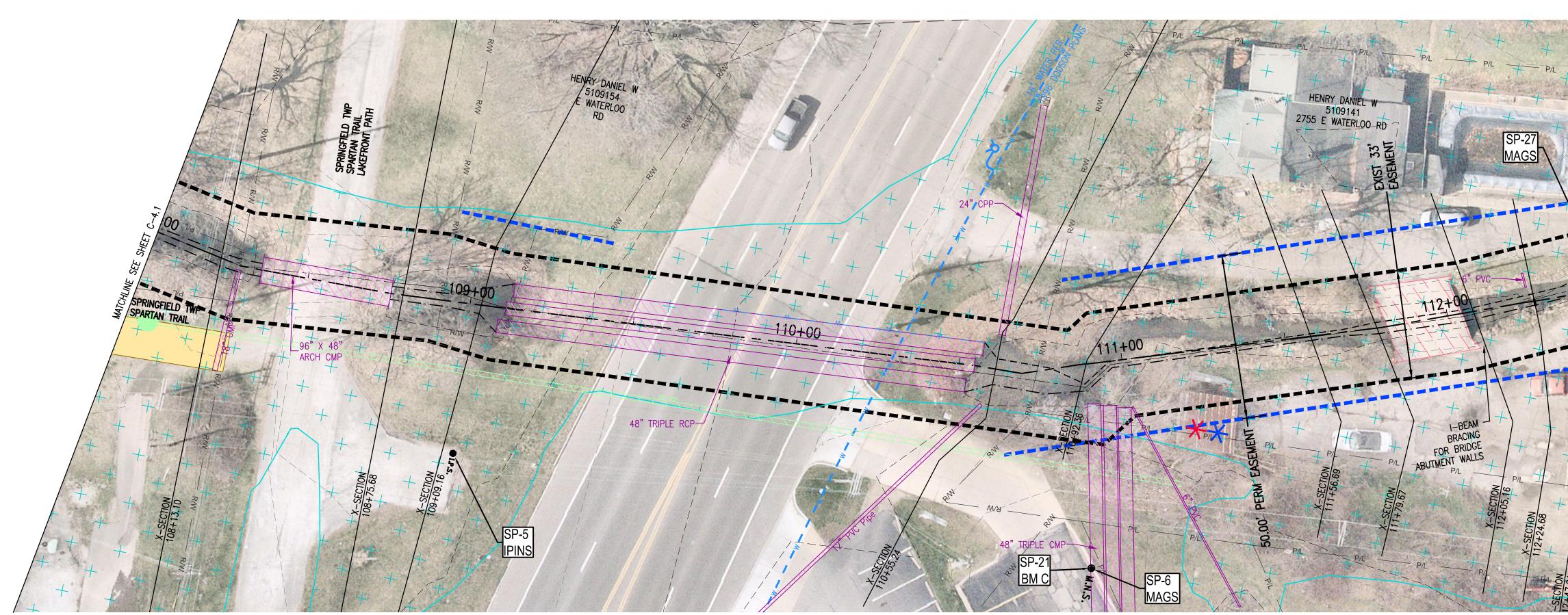
EXISTING DITCH EASEMENT ENCROACHMENT

PERMANENT EASEMENT ENCROACHMENT

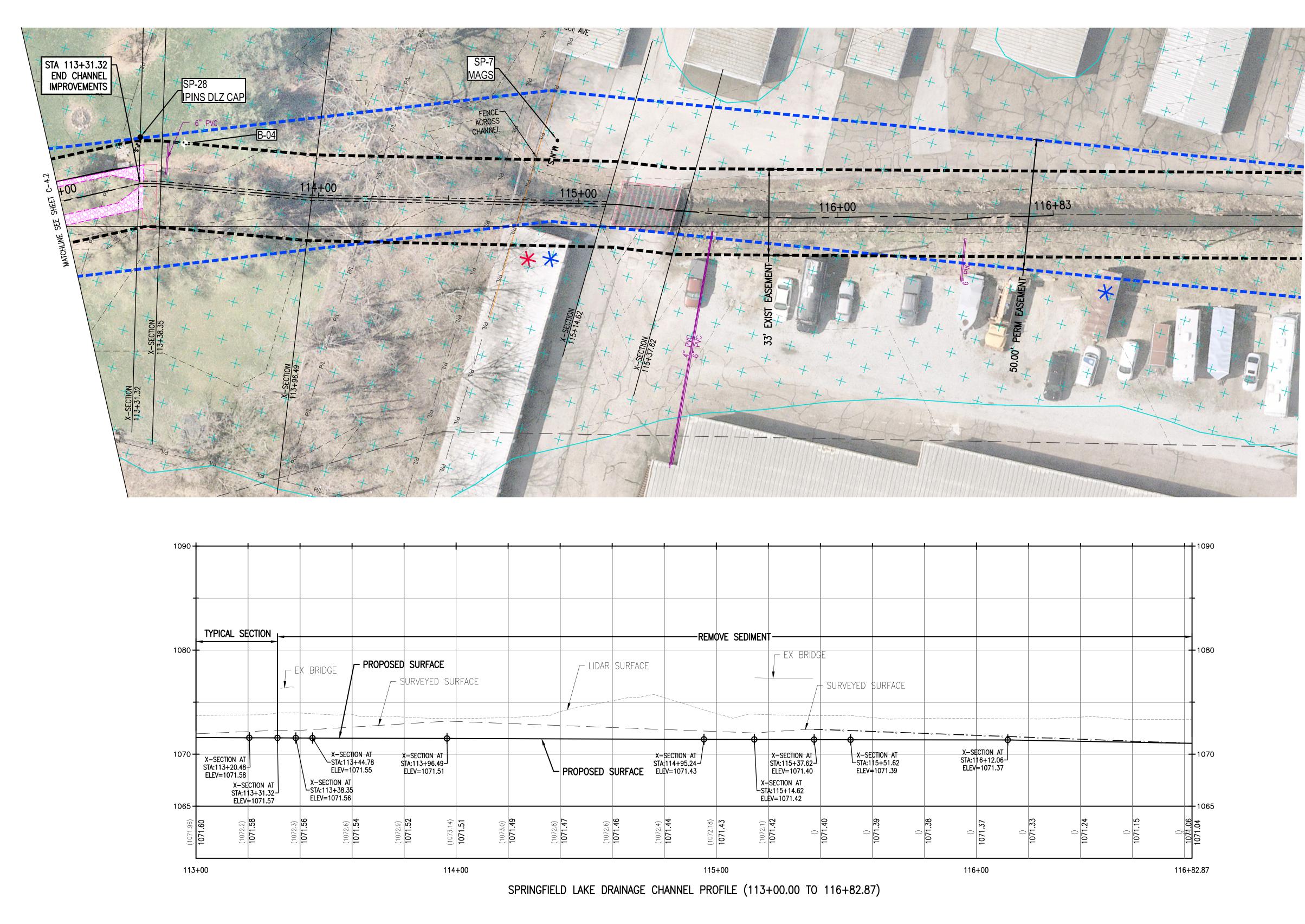
FENCE

NOTE: 1. LIDAR AND SURVEYED SURFACES ON PROFILE ARE ALONG THE CENTER OF THE CHANNEL. THE ACCURACY OF THE LIDAR SURFACE VARIES. EXISTING ELEVATIONS SHOWN ALONG BOTTOM OF PROFILE ARE INTERPELATED BETWEEN SURVEYED SECTIONS.




PLAN & PROFILE STA 103+00 TO STA 108+00

IF THIS BAR DOES NOT MEASURE 1" THEN DRAWING IS NOT TO SCALE


WARNING

0 1/2 1

	DESIGNED BY: <u>PAN</u> DRAWN BY: <u>PAN</u>	SURFACE WATER MANAGEMENT DISTRICT HUC 12-041100020303	
IARKS	SHEET CHK'D BY: <u>MSE</u> CROSS CHK'D BY: <u>KDR</u> APPROVED BY: <u>MSE</u> ISSUED DATE: <u>3/7/25</u>	SPRINGFIELD LAKE CHANNEL CHANNEL RESTORATION PRELIMINARY PLANS	

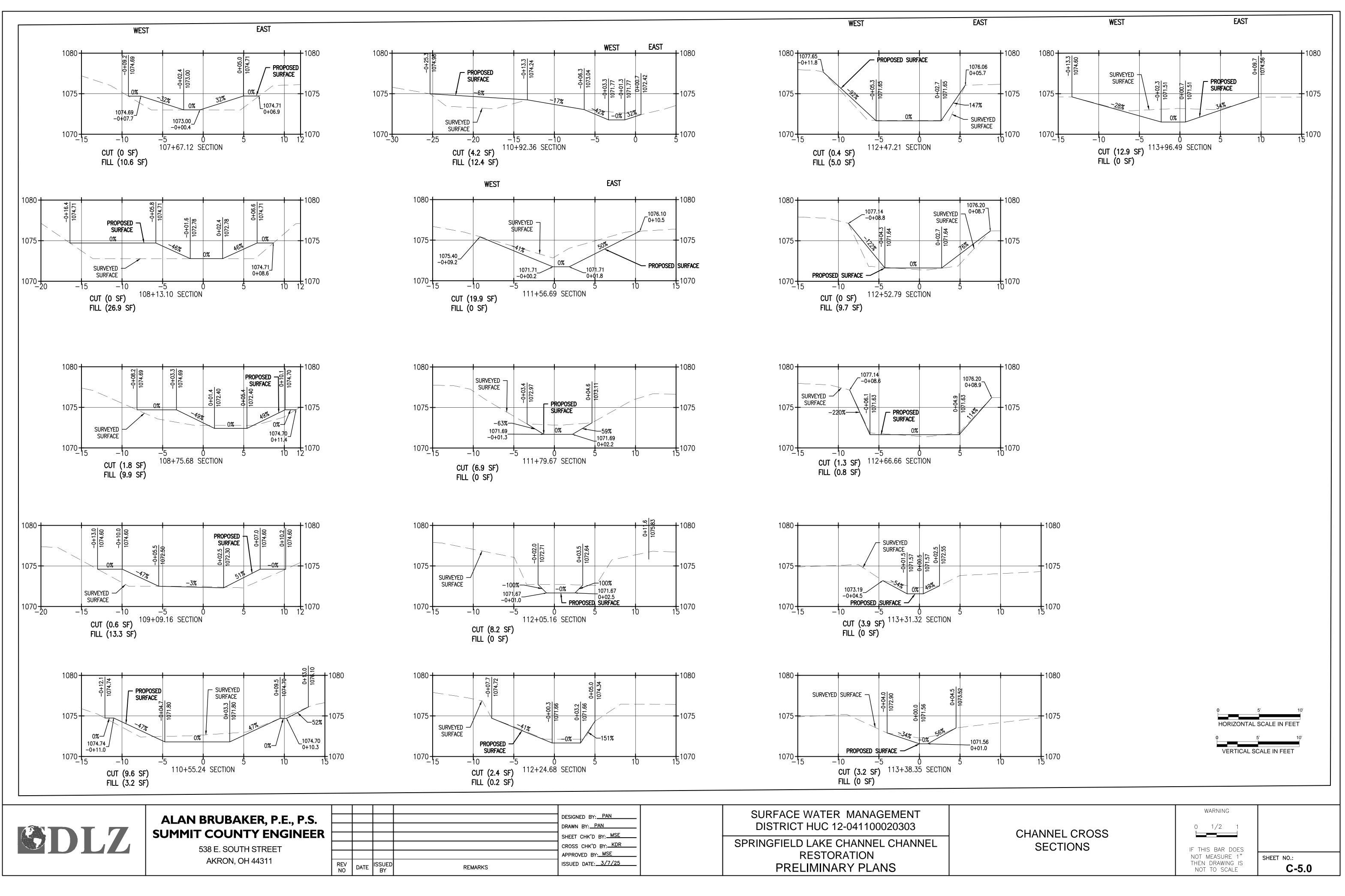
			DESIGNED BY: <u>PAN</u> DRAWN BY: <u>PAN</u>	SURFACE WATER MANAGEMENT DISTRICT HUC 12-041100020303	
			SHEET CHK'D BY: <u>MSE</u> CROSS CHK'D BY: <u>KDR</u> APPROVED BY: <u>MSE</u>	SPRINGFIELD LAKE CHANNEL CHANNEL RESTORATION	
REV NO	SSUED BY	REMARKS	ISSUED DATE: <u>3/7/25</u>	PRELIMINARY PLANS	

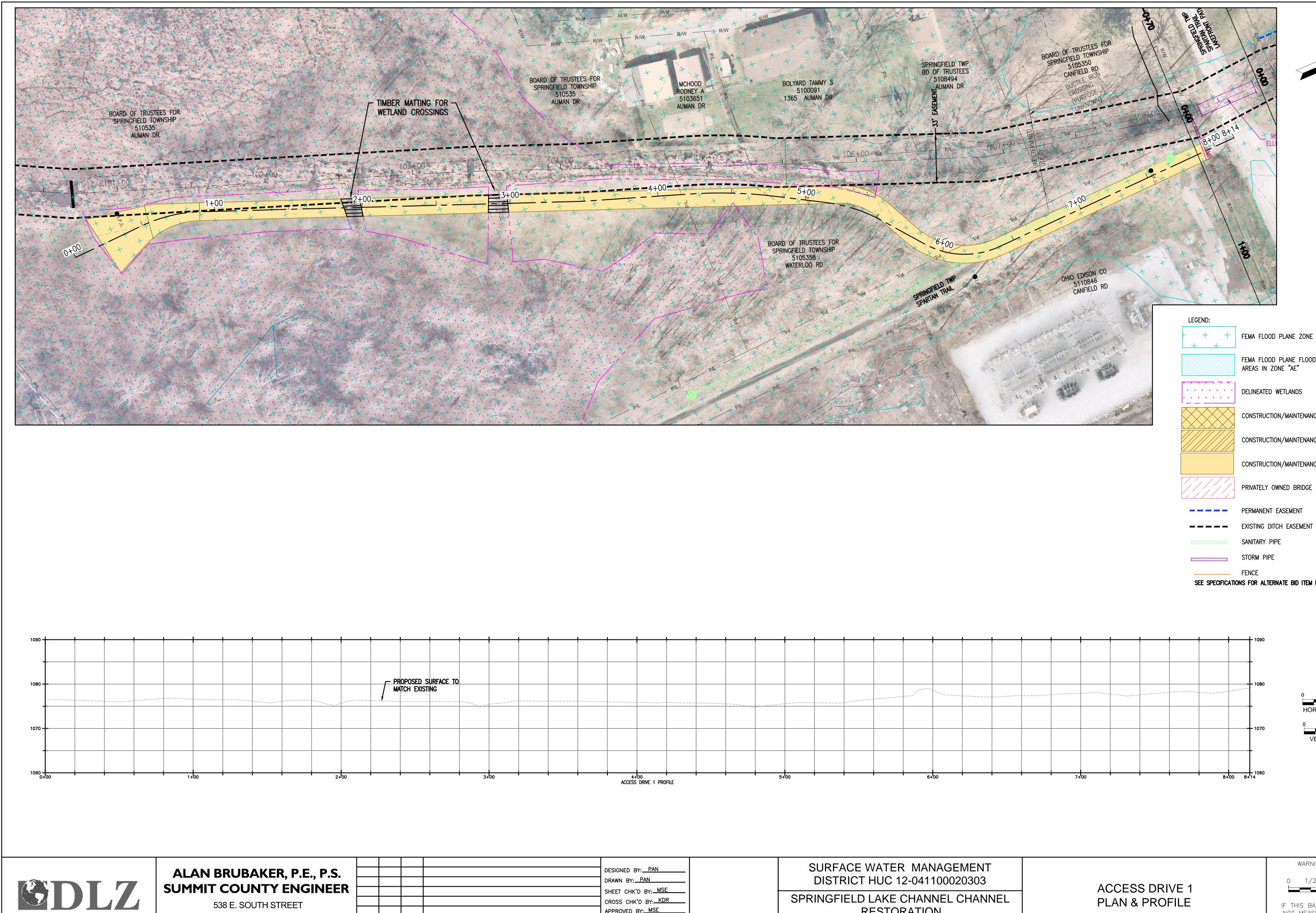
538 E. SOUTH STREET AKRON, OH 44311

	1			1	1	1	1	1		1	1	L I I	-1090
	0					0							- 1090
			REM(ove sedimen'	T								-
.IDAR	SURFACE				EX BRIDG	e - Surveyed	SURFACE						-1080
							- o <u> o</u> <u> o</u> <u> o</u> o				· · · · · · · · · · · · · · · · · · ·		_
SED	SURFACE	X-SE STA:1 ELEV	ECTION AT 14+95.24- =1071.43	x-	X-SECTION AT STA:115+37.62 ELEV=1071.40 -SECTION AT A:115+14.62 EV=1071.42	STA:1 ELEV=	CTION AT 15+51.62 ⊧1071.39	STA:1	CTION_AT 16+12.06_ =1071.37				-1070
(1072.6)	1071.46	(1072.4) 1071 44	(1072.18)	1071.43 (1072.1)	1071.42 ()	1071.40 ()	1071.39 ()	1071.38 ()	1071.37 ()	1071.33 0	1071.24 ()		
				+00				116	+00			116+8	82.87

	FEMA FLOOD PLANE ZONE 'A'
· · · · · ·	DELINEATED WETLANDS
	CONSTRUCTION/MAINTENANCE DRIVE (GRAVEL)
	CONSTRUCTION/MAINTENANCE DRIVE (GRASS PAVERS)
	CONSTRUCTION/MAINTENANCE DRIVE
	PRIVATELY OWNED BRIDGE
	ROCK BANK STABILIZATION (SEE DETAIL)
o o	ROCK TOE PROTECTION (SEE DETAIL)
	PERMANENT EASEMENT
	EXISTING DITCH EASEMENT
	SANITARY PIPE
<i></i>	STORM PIPE
*	EXISTING DITCH EASEMENT ENCROACHMENT
*	PERMANENT EASEMENT ENCROACHMENT
NOTE:	FENCE

1. LIDAR AND SURVEYED SURFACES ON PROFILE ARE ALONG THE CENTER OF THE CHANNEL. THE ACCURACY OF THE LIDAR SURFACE VARIES. EXISTING ELEVATIONS SHOWN ALONG BOTTOM OF PROFILE ARE INTERPELATED BETWEEN SURVEYED SECTIONS.


0		2	0'		40'
HO	RIZC	ONTAL S	SCALI	E IN FEE	ET
0		:	5'		10'
V	ERT	ICAL S	CALE	IN FEE	T

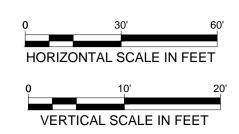

LEGEND:

PLAN & PROFILE STA 113+00 TO STA 116+83

0		1/2	1
IF '	THIS	BAR	DOES
NO	T MF	ASUF	RF 1"

THEN DRAWING IS NOT TO SCALE

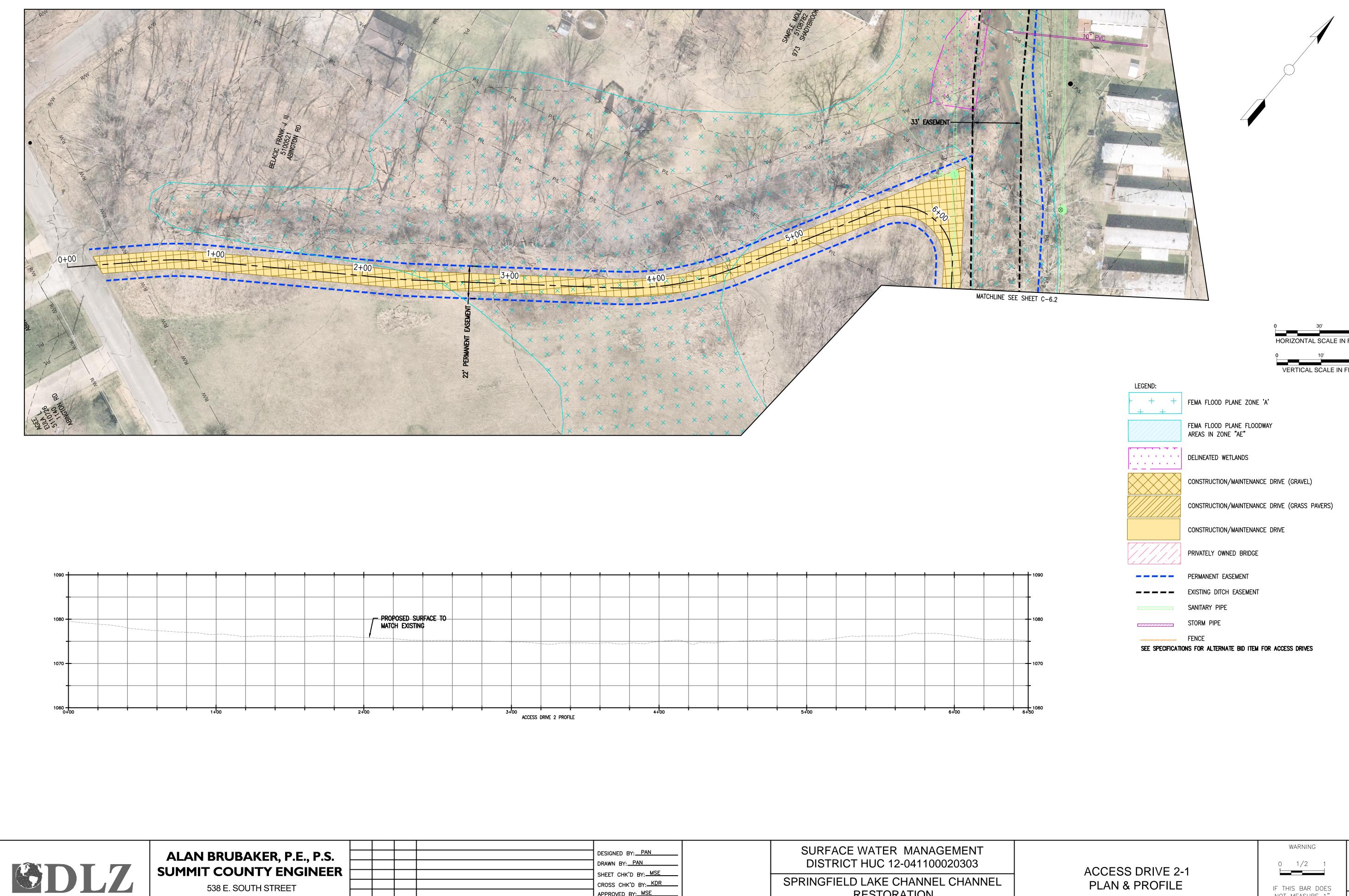
AKRON, OH 44311


REMA

REV DATE ISSUED BY

	DESIGNED BY: <u>PAN</u> DRAWN BY: <u>PAN</u> SHEET CHK'D BY: <u>MSE</u>	SURFACE WATER MANAGEMENT DISTRICT HUC 12-041100020303	
ARKS	CROSS CHK'D BY: <u>KDR</u> APPROVED BY: <u>MSE</u> ISSUED DATE: <u>3/7/25</u>	SPRINGFIELD LAKE CHANNEL CHANNEL RESTORATION PRELIMINARY PLANS	

FEMA FLOOD PLANE ZONE 'A' FEMA FLOOD PLANE FLOODWAY AREAS IN ZONE "AE" DELINEATED WETLANDS CONSTRUCTION/MAINTENANCE DRIVE (GRAVEL) CONSTRUCTION/MAINTENANCE DRIVE (GRASS PAVERS) CONSTRUCTION/MAINTENANCE DRIVE PRIVATELY OWNED BRIDGE


SEE SPECIFICATIONS FOR ALTERNATE BID ITEM FOR ACCESS DRIVES

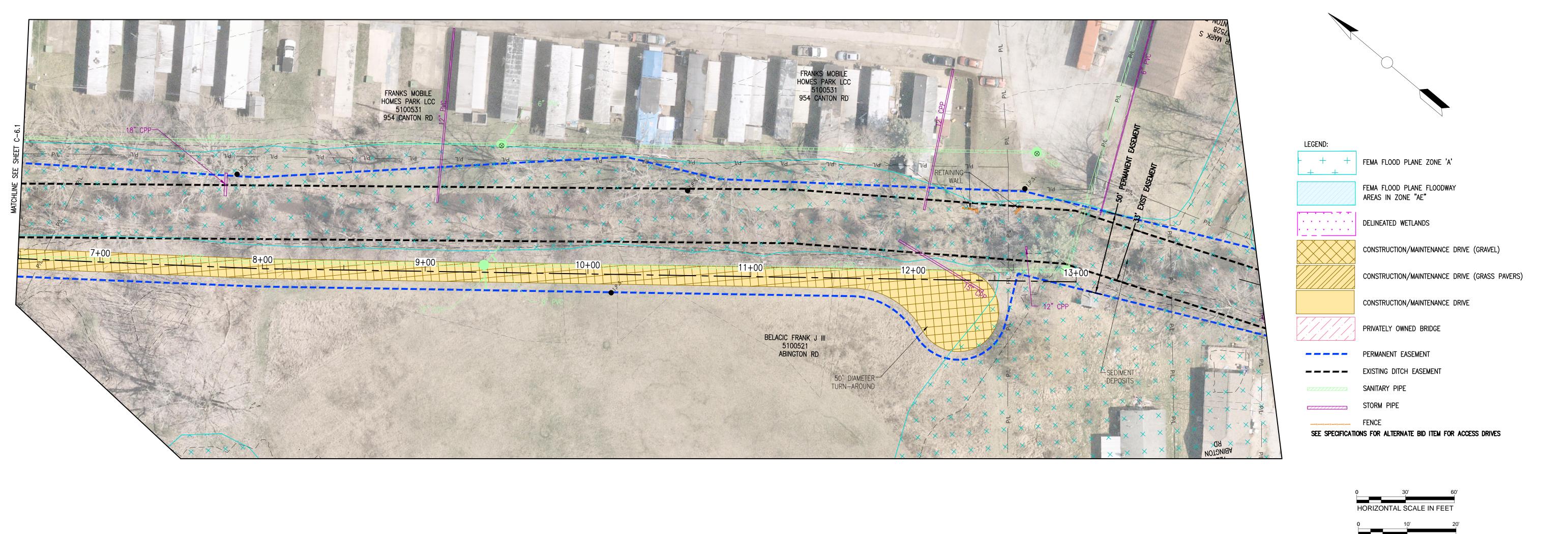
WARNING

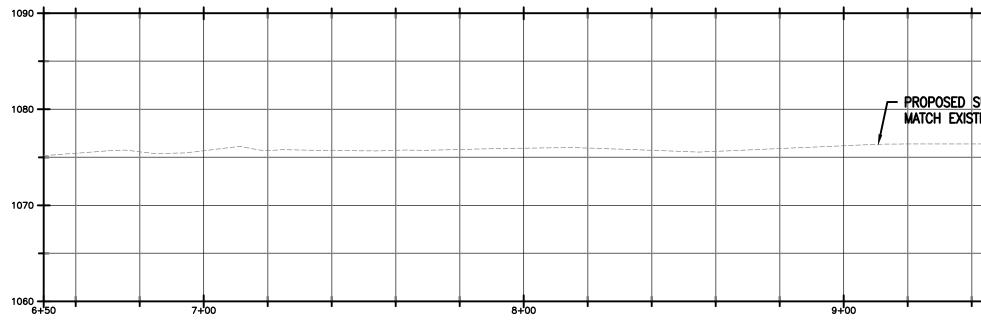
0 1/2 1

IF THIS BAR DOES NOT MEASURE 1" THEN DRAWING IS NOT TO SCALE

538 E. SOUTH STREET AKRON, OH 44311

REMA


REV DATE ISSUED BY


	DESIGNED BY: <u>PAN</u> DRAWN BY: <u>PAN</u>	SURFACE WATER MANAGEMENT DISTRICT HUC 12-041100020303	
ARKS	SHEET CHK'D BY: <u>MSE</u> CROSS CHK'D BY: <u>KDR</u> APPROVED BY: <u>MSE</u> ISSUED DATE: <u>3/7/25</u>	SPRINGFIELD LAKE CHANNEL CHANNEL RESTORATION PRELIMINARY PLANS	

	0 HORIZO	30' NTAL SCA	LE IN FEE	60' ■ T
	0 VERT	10' CAL SCAL	E IN FEET	20'
ONE 'A'				

ACCESS DRIVE 2-1
PLAN & PROFILE

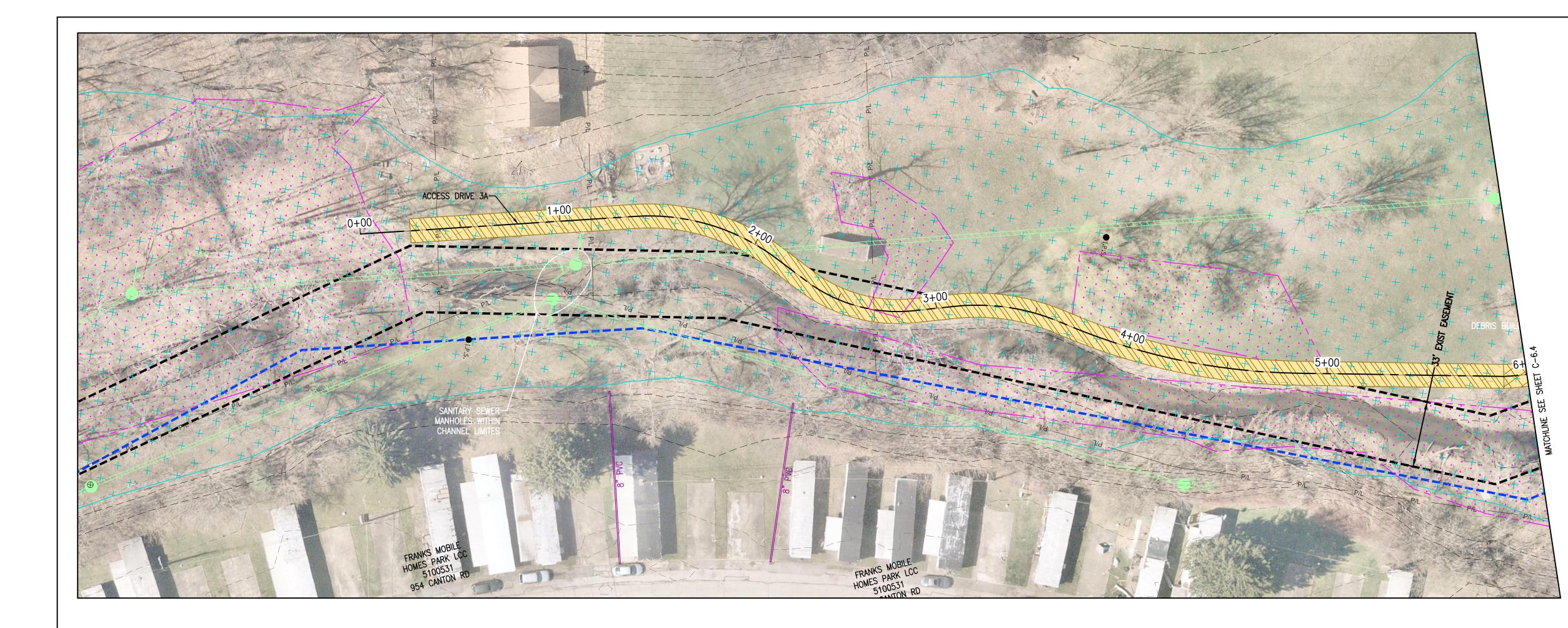
IF THIS BAR DOES NOT MEASURE 1" THEN DRAWING IS NOT TO SCALE

ALAN BRUBAKER, P.E., P.S. SUMMIT COUNTY ENGINEER

538 E. SOUTH STREET AKRON, OH 44311

				DESIGNED BY: <u>PAN</u> DRAWN BY: <u>PAN</u>	SURFACE WATER MANAGEMENT DISTRICT HUC 12-041100020303
				SHEET CHK'D BY: <u>MSE</u> CROSS CHK'D BY: <u>KDR</u>	SPRINGFIELD LAKE CHANNEL CHANNEL
				APPROVED BY: <u>MSE</u>	RESTORATION
REV NO	DATE	ISSUED BY	REMARKS	ISSUED DATE: <u>3/7/25</u>	PRELIMINARY PLANS

-														 		+ 1090
																L
D SURF	ACE T	0														
<u>d surf</u> / (Isting		-														1080
																ſ
					 						 			 		1070
															=	ł
_			10				11-				10	-00			17	1060 -00
	AC	CESS DRIVE 2	10- PROFILE	+00			11-	FUU			124	-00			13-	-00

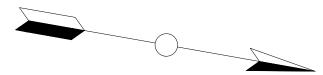

VERTICAL SCALE IN FEET

ACCESS DRIVE 2-2 PLAN & PROFILE

WARNING

0 1/2 1

IF THIS BAR DOES NOT MEASURE 1" THEN DRAWING IS NOT TO SCALE


1090 🕂			 		 	•	A	-	-	-	+		<u> </u>	+	I	 	 		
	_																		
1080 -																			
+							PROPOSED	SURFACE TO	/										
1070 -			 								1					 	 		
-																			
1060 -					 											 			
-					 											 	 		
1050																			
1050 - 0+0	00		1+0	00	1	1	2+00	1				+00 /E 3A PROFILE	1		4+00	T	5+	-00	 1
											AUGEDD DAN								

538 E. SOUTH STREET AKRON, OH 44311

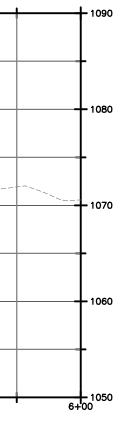
				DESIGNED BY: <u>PAN</u> DRAWN BY: <u>PAN</u>	SURFACE WATER MANAGEMENT DISTRICT HUC 12-041100020303	
				SHEET CHK'D BY: <u>MSE</u> CROSS CHK'D BY: <u>KDR</u> APPROVED BY: <u>MSE</u>	SPRINGFIELD LAKE CHANNEL CHANNEL RESTORATION	
REV NO	DATE	ISSUED BY	REMARKS	ISSUED DATE: 3/7/25	PRELIMINARY PLANS	

ODLZ

LEGEND:

FEMA FLOOD PLANE ZONE 'A'

FEMA FLOOD PLANE FLOODWAY AREAS IN ZONE "AE"

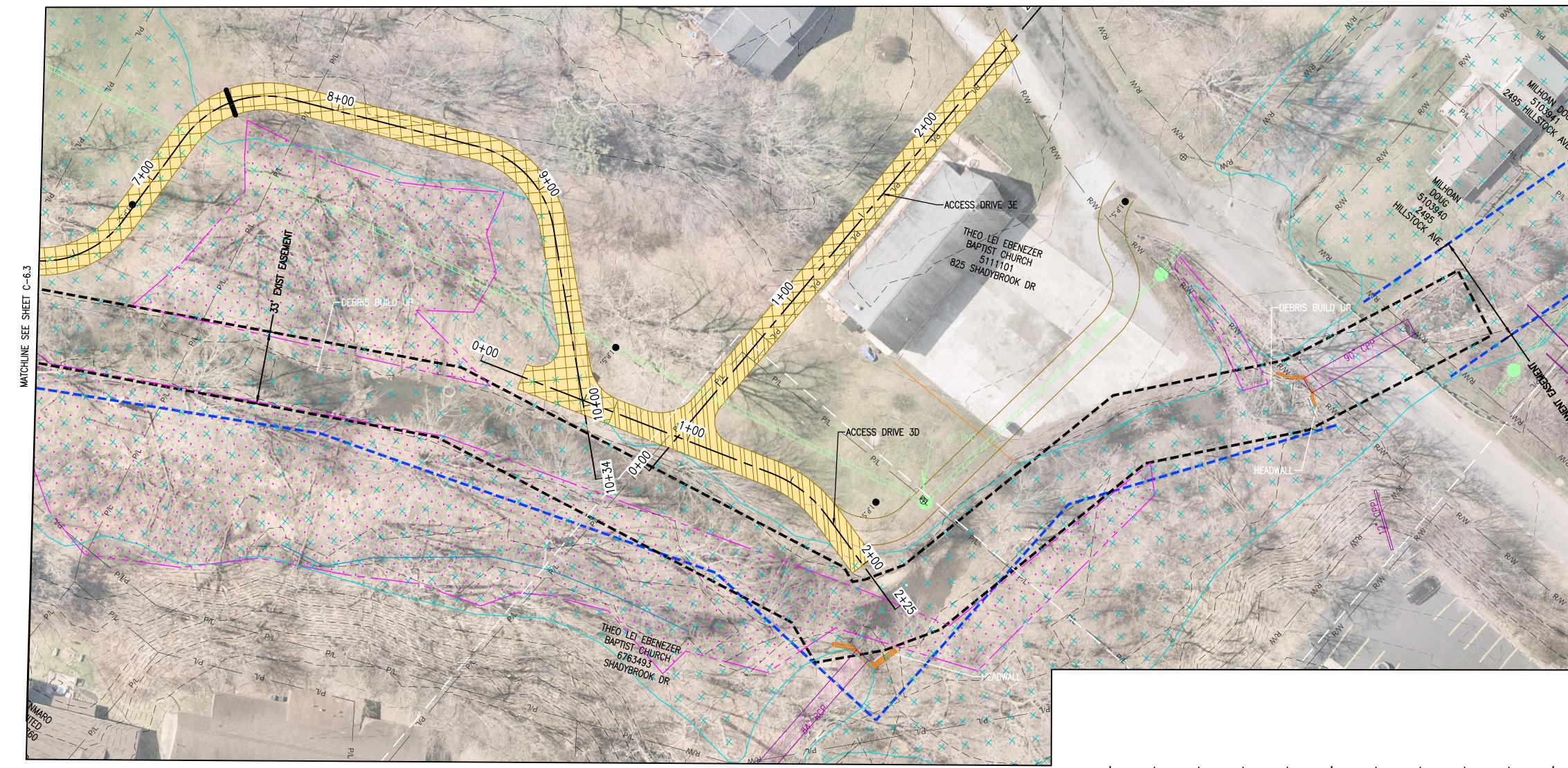

. . . . • • •

DELINEATED WETLANDS CONSTRUCTION/MAINTENANCE DRIVE (GRAVEL) CONSTRUCTION/MAINTENANCE DRIVE (GRASS PAVERS) CONSTRUCTION/MAINTENANCE DRIVE PRIVATELY OWNED BRIDGE PERMANENT EASEMENT EXISTING DITCH EASEMENT SANITARY PIPE STORM PIPE

FENCE SEE SPECIFICATIONS FOR ALTERNATE BID ITEM FOR ACCESS DRIVES

HORIZONTAL SCALE IN FEET

VERTICAL SCALE IN FEET



ACCESS DRIVE 3-1 PLAN & PROFILE

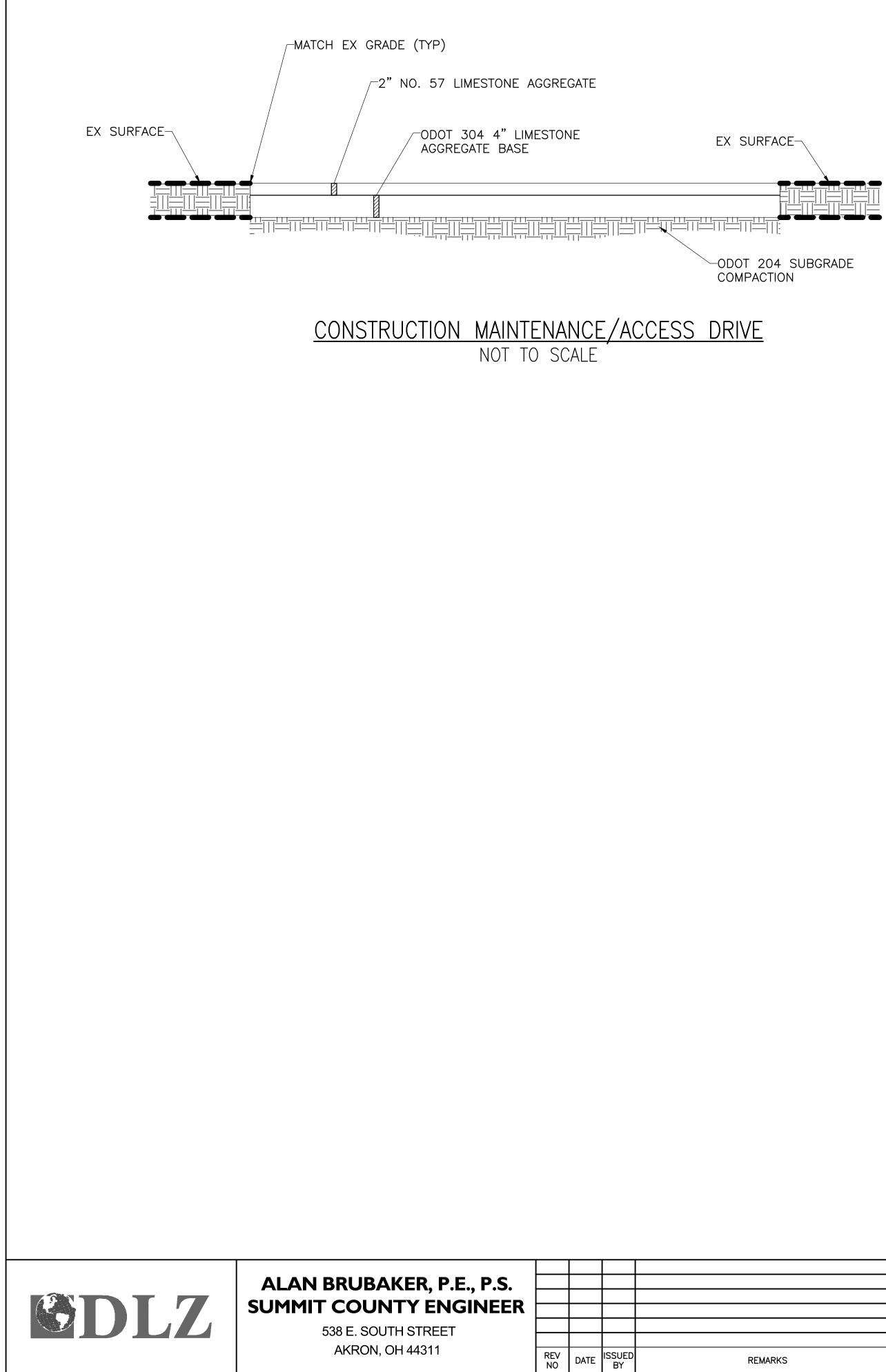
WARNING

0 1/2 1

IF THIS BAR DOES NOT MEASURE 1" THEN DRAWING IS NOT TO SCALE

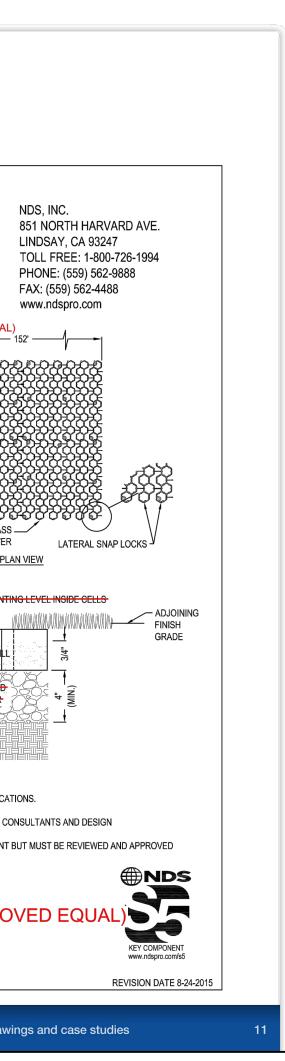
MADLZ

ALAN BRUBAKER, P.E., P.S. SUMMIT COUNTY ENGINEER


538 E. SOUTH STREET AKRON, OH 44311

REV NO	DATE	ISSUED BY	REMA

1090 -	┣────	<u> </u>	•	 		 	 	L
-	_							
1080 -								
1000 -								
-	=						 	
				 		 ,		
1070 -	-							
-								
- 1060 6+	-00			7+	00		 8+	00
							A	oo CCESS DRIVI


	DESIGNED BY: <u>PAN</u> DRAWN BY: <u>PAN</u> SHEET CHK'D BY: <u>MSE</u>	SURFACE WATER MANAGEMENT DISTRICT HUC 12-041100020303	
ARKS	SHEET CHK'D BY: <u>MSE</u> CROSS CHK'D BY: <u>KDR</u> APPROVED BY: <u>MSE</u> ISSUED DATE: <u>3/7/25</u>	SPRINGFIELD LAKE CHANNEL CHANNEL RESTORATION PRELIMINARY PLANS	

Ma A A A A A A A A A A A A A A A A A A A					
X X X					
5,030 DOUC ×					
PCH NEX					
× × ×	LEGEND:				
× \$2		FEMA FLOOD PLAN	e zone 'a'		
××××		FEMA FLOOD PLAN AREAS IN ZONE "A			
×	· · · · · · · ·	DELINEATED WETLA	NDS		
			INTENANCE DRIVE (GRAV	′EL)	
13 1 1 3 1 3 1		CONSTRUCTION/MA	INTENANCE DRIVE (GRAS	S PAVERS)	
LAND TO THE REAL PROPERTY OF THE PROPERTY OF T		CONSTRUCTION/MA	INTENANCE DRIVE		
I HAIMMAN		PRIVATELY OWNED	BRIDGE		
Maria .95		PERMANENT EASEM	ENT		
		EXISTING DITCH EA SANITARY PIPE	SEMENT		
		SANITART PIPE			
		FENCE			
	SEE SPECIFIC/	ATIONS FOR ALTERNATE I	BID ITEM FOR ACCESS DR	VES	
Rm		DRIZONTAL SCALE IN			
	0	10'	20'		
		VERTICAL SCALE IN F	EET		
1 Mar 14					
	+ + +	- I	, , ,		1090
	PROPOSE MATCH E	D SURFACE TO XISTING			
	I				
8+00		9+00		10+00	1060 10+34
ACCESS DRIVE 3A PROFILE				10100	
					1090
	PROPOSED SURFACE TO				++
					1080
					1070
	1+00 ACCESS DRIV	/E 3E PROFILE	2+00		1060 2+75
			WARNING		
	CESS DRIVE 3-2		0 1/2	1	
PL	AN & PROFILE		IF THIS BAR NOT MEASURI		т по.:
			THEN DRAWIN NOT TO SC	GIS	C-6.4

ACTUAL FINISH GRADE EZ ROLL GRASS SOIL FILL LEVELS INSIDE SOIL FILL LEVELS INSIDE COMPANY SOIL FILL SOIL FILL SO		tallation idelines	
<section-header><section-header><section-header></section-header></section-header></section-header>	Base	course options	
STOCK ROLL SIZES: 3.86W X 24L (96.1 SP) 3.86W X 24L (96.1 SP) 3.86W X 24L (96.1 SP) 3.86W X 24L (96.1 SP) 3.86W X 24L (96.1 SP) 2.4 SP 24 SP 24 2.4 SP 24 SP 24 2.4 SP 24 SP 24 2.4 SP 24 SP 24 2.4 SP 24 SP 24 3.5 STRENGTH (OPEN CELL NO FILL) EXCEEDS H20 LOADING GRASS SEED OR 50D: SEED PER ODOT ITEM 659 3.6 UNFILL: TOPSOIL PER ODOT ITEM 659 3.6 UNFILL: SINSIDE ACTUAL FINISH GRADE SOL FILL LEVELS INSIDE LEVEL SOL FILL LEVELS INSIDE 4.6 UNFILL: SINSIDE 4.6 UNFILL: SINSIDE 5.6 UNFIL			
CUSTOM SIZES AVAILABLE UPON REQUEST: 1:4° X 152 (28 S0, FT.) 2 X 152 (39 S0, FT.) 2 X 152 (30 FT.) 2		STOCK ROLL SIZE'S: 3.96'W X 24'L (95.1 SF)	
NESTED HONEYCOMB CELL 57, 888 PSF LAYOUT COMPRESSIVE 402 PSI STRENGTH (OPEN CELL NO FILL EXCEEDS H20 LOADING GRASS SEED OR 900 F: SEED PER ODOT ITEM 659 SOIL INFILI: TOPSOIL PER ODOT ITEM 659 SOIL INFILI: TOPSOIL PER ODOT ITEM 659 SOIL FILL EVELS INSIDE PAVER GRIDWORK AFTER HEAVY WATE ROWN. THIS IS THE ACTUAL SOD PLANTING LEVEL. MASHTO #57 BASE ROCK ON OTHER APPROVE SOIL FILL LEVELS INSIDE PAVER GRIDWORK AFTER HEAVY WATE ROWN. THIS IS THE ACTUAL SOD PLANTING LEVEL. MASHTO #57 BASE ROCK ON OTHER APPROVE SOUL FILL LEVELS INSIDE PAVER GRIDWORK AFTER HEAVY WATE ROWN. THIS IS THE ACTUAL SOD PLANTING LEVEL. MASHTO #57 BASE ROCK ON OTHER APPROVE SOUL FILL LEVELS INSIDE PAVER GRIDWORK AFTER HEAVY WATE ROWN. THIS IS THE ACTUAL SOD PLANTING LEVEL. MASHTO #57 BASE ROCK ON OTHER APPROVE SOUL FILL LEVELS INSIDE PAVER GRIDWORK AFTER HEAVY WATE ROWN. THIS IS THE ACTUAL SOD PLANTING LEVEL. MASHTO #57 BASE ROCK ON OTHER APPROVE SOUL FILL LEVELS INSIDE PAVER GRIDWORK AFTER HEAVY WATE ROWN. THIS IS THE ACTUAL SOD PLANTING LEVEL. MASHTO #57 BASE ROCK ON OTHER APPROVE SOUL AS SOT FILL EVEL SOULS ABSHTO #57 BASE ROCK ON OTHER APPROVE SOUL AS SOT FILL APPROVE. MASHTO #57 BASE ROCK ON OTHER APPROVE SOUL AS SOT FILL BE APPROVE AND AND ACTURE APPROVE SOUL AS SOT FILL BE APPROVE AND ADVERTING AND ACTURE APPROVE SOUL AS SOT FILL BE APPROVE AND ADVERTING ADVERTING ADVERTING ADVERTING ADVERTING ADVERTING A PROVE SOUL AS SOT FILL BE APPROVE ADVECTING ADVECTING ADVECTING ADVECTING A PROVE PROFESSION ALS SOT PLANTING PLANTING PLANTING ADVECTING A PROVE DO NOT SCALE DRAWING. MILL INFORMATION CONTAINED FOR USE BY ARCHITECTS, ENGINEERS, CONTRACTOR PROFESSION ALS SOT PLANTING PLANTING PLANTING PLANTING PLANTING PLANTING ADVECTING ADVECTOR ADVECTOR PROFESSION ALS SOT PLANTING ADVECTOR ADVECT		CUSTOM SIZES AVAILABLE UPON REQUEST: 1'-6" X 152' (228 SQ. FT.)	″ ∏&&&&
STRENGTH (OPEN CELL NO FILL) EXCEEDS H20 LOADING GRASS SEED OR GOD : SEED PER ODOT ITEM 659 SOIL INFILL: TOPSOIL PER ODOT ITEM 659 EVALUATION OF THE PROPOSITION OF THE SOIL OF THE SOIL OF THE SOIL FILL LEVELS INSIDE PAVER GRIDWORK AFTER HEAVY WATER DOWN. THIS IS THE ACTUAL SOD PLANTING LEVEL. EVALUATION OF THE ASST OCCUPACT NATIVE SOILS SOIL FILL LEVELS INSIDE PAVER GRIDWORK AFTER HEAVY WATER DOWN. THIS IS THE ACTUAL SOD PLANTING LEVEL. SOIL OF THE SOIL OF THE SOILS SECTION MOTES 1. INSTALLATION TO BE COMPLETED IN ACCORDANCE WITH MANUFACTURERS SPECIFIC DO NOT SCALE DRAWING. 1. THIS DRAWING IS INTENDED FOR USE BY ARCHITECTS, ENGINEERS, CONTRACTORS PROFESSIONALS FOR PLANNING PURPOSES ONLY. 1. ALL INFORMATION CONTAINED HEREIN WAS CURRENT AT THE TIME OF DEVELOPM BY THE PRODUCT MANUFACTURER TO BE CONSIDERED ACCURATE.		NESTED HONEYCOMB CELL: 57, 888 PSF	
SULINFILI: TOPSOIL PER ODOT ITEM 63 C RUL GRADE ACTUAL FINISH GRADE ACTUAL FINISH ACTUAL FINISH GRADE ACTUAL FINISH ACTUAL FINISH GRADE ACTUAL FINISH GRADE ACTUAL FINISH GRADE ACTUAL FINISH ACTUAL FINISH GRADE ACTUAL FINISH ACTUAL FINISH GRADE ACTUAL FINISH ACTUAL FINISH ACTUAL FINISH GRADE ACTUAL FINISH ACTUAL FINISH ACTU		STRENGTH (OPEN CELL NO FILL) EXCEEDS H20	
CTUAL FINISH GRADE ACTUAL FINISH GRADE PAVER GRIDWORK AFTER HEAVY WATER DOWN. THIS IS THE ACTUAL SO PLANTING LEVEL. AASHTO #57 BASE ROCK ON OTHER APPROV TOUAL AD SPECIFIED BY PROJECT ENGINEE SOIL INFLL OF TROJECT ENGINEE AASHTO #57 BASE ROCK ON OTHER APPROV TOUAL AD SPECIFIED BY PROJECT ENGINEE SECTION MOTES: 1. INSTALLATION TO BE COMPLETED IN ACCORDANCE WITH MANUFACTURER'S SPECIF DO NOT SCALE DRAWING. 1. THIS DRAWING IS INTENDED FOR USE BY ARCHITECTS, ENGINEERS, CONTRACTORS PROFESSIONALS FOR PLANNING PURPOSES ONLY. 1. ALL INFORMATION CONTAINED HEREIN WAS CURRENT AT THE TIME OF DEVELOPM BY THE PRODUCT MANUFACTURER TO BE CONSIDERED ACCURATE. EZ ROLL GRASS PAVERS (OR APPER)		GRASS SEED OR SOD: SEED PER ODOT ITEM 659	
ACTUAL FINISH GRADE SOIL FILL LEVELS INSIDE PAVER GRIDWORK AFTER HEAVY WATER DOWN. THIS IS THE ACTUAL SOD PLANTING LEVEL. AASHTO #57 BASE ROCK OR OTHER APPROV EQUAL AS SPECIFIED BY PROJECT ENGINEE SOIL INFILL AASHTO #57 BASE ROCK OR OTHER APPROV EQUAL AS SPECIFIED BY PROJECT ENGINEE SECTION NOTES: 1. INSTALLATION TO BE COMPLETED IN ACCORDANCE WITH MANUFACTURER'S SPECIF 2. DO NOT SCALE DRAWING. 3. THIS DRAWING IS INTENDED FOR USE BY ARCHITECTS, ENGINEERS, CONTRACTORS PROFESSIONALS FOR PLANNING PURPOSES ONLY. 4. ALL INFORMATION CONTAINED HEREIN WAS CURRENT AT THE TIME OF DEVELOPM BY THE PRODUCT MANUFACTURER TO BE CONSIDERED ACCURATE. EZ ROLL GRASS PAVERS (OR APPER		SOIL INFILL: TOPSOIL PER ODOT ITEM 659	EZ ROLL GR ROAD PA
ACTUAL FINISH GRADE			INAJANIAJANIA
EZ ROLL GRASS PAVERS (OR APPF		SOIL FILL LEVELS INSIDE	
 INSTALLATION TO BE COMPLETED IN ACCORDANCE WITH MANUFACTURER'S SPECIF DO NOT SCALE DRAWING. THIS DRAWING IS INTENDED FOR USE BY ARCHITECTS, ENGINEERS, CONTRACTORS PROFESSIONALS FOR PLANNING PURPOSES ONLY. ALL INFORMATION CONTAINED HEREIN WAS CURRENT AT THE TIME OF DEVELOPM BY THE PRODUCT MANUFACTURER TO BE CONSIDERED ACCURATE. 		COMPACT	D BY PROJECT ENGINEE
		 INSTALLATION TO BE COMPLETED IN ACCORDANCE WITH M DO NOT SCALE DRAWING. THIS DRAWING IS INTENDED FOR USE BY ARCHITECTS, ENC PROFESSIONALS FOR PLANNING PURPOSES ONLY. ALL INFORMATION CONTAINED HEREIN WAS CURRENT AT T 	Gineers, contractors The time of developme

DESIGNED BY: <u>PAN</u> DRAWN BY: <u>PAN</u>	SURFACE WATER MANAGEMENT DISTRICT HUC 12-041100020303	
SHEET CHK'D BY: <u>MSE</u> CROSS CHK'D BY: <u>KDR</u> APPROVED BY: <u>MSE</u> ISSUED DATE: <u>3/7/25</u>	SPRINGFIELD LAKE CHANNEL CHANNEL RESTORATION PRELIMINARY PLANS	

	WARNING	
PAVEMENT DETAILS	0 1/2 1	
	NOT MEASURE 1" THEN DRAWING IS NOT TO SCALE	SHEET NO.: C-6.5